A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning models predicting risk of revision or secondary knee injury after anterior cruciate ligament reconstruction demonstrate variable discriminatory and accuracy performance: a systematic review. | LitMetric

Background: To summarize the statistical performance of machine learning in predicting revision, secondary knee injury, or reoperations following anterior cruciate ligament reconstruction (ACLR), and to provide a general overview of the statistical performance of these models.

Methods: Three online databases (PubMed, MEDLINE, EMBASE) were searched from database inception to February 6, 2024, to identify literature on the use of machine learning to predict revision, secondary knee injury (e.g. anterior cruciate ligament (ACL) or meniscus), or reoperation in ACLR. The authors adhered to the PRISMA and R-AMSTAR guidelines as well as the Cochrane Handbook for Systematic Reviews of Interventions. Demographic data and machine learning specifics were recorded. Model performance was recorded using discrimination, area under the curve (AUC), concordance, calibration, and Brier score. Factors deemed predictive for revision, secondary injury or reoperation were also extracted. The MINORS criteria were used for methodological quality assessment.

Results: Nine studies comprising 125,427 patients with a mean follow-up of 5.82 (0.08-12.3) years were included in this review. Two of nine (22.2%) studies served as external validation analyses. Five (55.6%) studies reported on mean AUC (strongest model range 0.77-0.997). Four (44.4%) studies reported mean concordance (strongest model range: 0.67-0.713). Two studies reported on Brier score, calibration intercept, and calibration slope, with values ranging from 0.10 to 0.18, 0.0051-0.006, and 0.96-0.97 amongst highest performing models, respectively. Four studies reported calibration error, with all four studies demonstrating significant miscalibration at either two or five-year follow-ups amongst 10 of 14 models assessed.

Conclusion: Machine learning models designed to predict the risk of revision or secondary knee injury demonstrate variable discriminatory performance when evaluated with AUC or concordance metrics. Furthermore, there is variable calibration, with several models demonstrating evidence of miscalibration at two or five-year marks. The lack of external validation of existing models limits the generalizability of these findings. Future research should focus on validating current models in addition to developing new multimodal neural networks to improve accuracy and reliability.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12891-024-08228-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699785PMC

Publication Analysis

Top Keywords

machine learning
20
revision secondary
20
secondary knee
16
knee injury
16
studies reported
16
anterior cruciate
12
cruciate ligament
12
learning models
8
risk revision
8
injury anterior
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!