Rare vascular complications in classical Ehlers-Danlos syndromes.

BMJ Case Rep

Medical Department, Lyell McEwin Hospital, Elizabeth Vale, South Australia, Australia.

Published: January 2025

Ehlers-Danlos syndromes (EDS) are a group of connective tissue disorders associated with skin, ligament, blood vessel and organ abnormalities. Skin hyperextensibility, joint hypermobility and widened atrophic scars are characteristic of classical EDS. Vascular complications, though rare in classical EDS, can be life-threatening, and this necessitates one to look for vascular associations in non-vascular, such as classical, forms of EDS due to the heterogeneity of the syndrome. Reports of vascular complications in classical EDS are often limited to haematomas being the most frequent manifestation. This case report discusses an elderly patient with genetically confirmed classical EDS who suffered from a series of pulmonary and vascular complications, including recurrent spontaneous haemopneumothorax, aortic dissection and eventual mesenteric haemorrhage, which resulted in his death. Identifying clinical red flags is crucial to predict such future catastrophic vascular events and guide appropriate counselling and management strategies for individuals with classical EDS.

Download full-text PDF

Source
http://dx.doi.org/10.1136/bcr-2024-260109DOI Listing

Publication Analysis

Top Keywords

classical eds
20
vascular complications
16
complications classical
8
ehlers-danlos syndromes
8
classical
7
eds
7
vascular
5
rare vascular
4
complications
4
classical ehlers-danlos
4

Similar Publications

Background: Classical-like Ehlers Danlos Syndrome type 1 (clEDS1) is a very rare form of Ehlers Danlos Syndrome (EDS) caused by tenascin-X (TNX) deficiency, with only 56 individuals reported. TNX is an extracellular matrix protein needed for collagen stability. Previous publications propose that individuals with clEDS1 might be at risk for gastrointestinal (GI) tract perforations and/or tracheal ruptures.

View Article and Find Full Text PDF

Ehlers-Danlos syndromes (EDS) are a group of connective tissue disorders associated with skin, ligament, blood vessel and organ abnormalities. Skin hyperextensibility, joint hypermobility and widened atrophic scars are characteristic of classical EDS. Vascular complications, though rare in classical EDS, can be life-threatening, and this necessitates one to look for vascular associations in non-vascular, such as classical, forms of EDS due to the heterogeneity of the syndrome.

View Article and Find Full Text PDF

Background And Hypothesis: Kidney macrophage infiltration is a histological hallmark of vasculitic lesions and is strongly linked to disease activity in anti-neutrophil cytoplasmic antibodies (ANCA)-associated glomerulonephritis (AGN). The precise mechanisms by which kidney macrophages influence local inflammation and long-term damage remain largely unknown.

Methods: Here, we investigate kidney macrophage diversity using single-cell transcriptome analysis of 25 485 freshly retrieved unfrozen, high-quality kidney CD45+ immune cells from five AGN patients during active disease, a lupus nephritis and nephrectomy control.

View Article and Find Full Text PDF

Low Penetrance Sarcomere Variants Contribute to Additive Risk in Hypertrophic Cardiomyopathy.

Circulation

December 2024

Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor. (E.D.S., Y.-C.T., B.E., A.B., O.M., S.S., A.S.H.).

Article Synopsis
  • - Hypertrophic cardiomyopathy (HCM) was traditionally seen as caused by rare, high-risk single-gene changes, but new research indicates common low-risk variants (LowSVs) also play a significant role in the disease.
  • - In a study of over 6000 patients, 12 LowSVs were discovered, which are relatively common in the general population and more prevalent in HCM patients, suggesting they may influence disease severity and risk.
  • - While LowSVs alone are linked to a later onset of HCM and fewer complications, their presence alongside more severe genetic variants increases health risks significantly.
View Article and Find Full Text PDF
Article Synopsis
  • * The cements, including two ready-to-use pastes and three powder-liquid combinations, were tested for their physical and chemical properties, focusing on their ability to release calcium ions after being soaked in water for 28 days.
  • * Results show that BioFactor and BioCal Cap cements released the most calcium ions, while Rootdent and TheraCal LC showed the least; an interesting finding was the relationship between aluminum content in the cements and the amount of calcium released.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!