A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of xanthan gum and hydroxypropyl methylcellulose on the structure and physicochemical properties of triticale gluten during fermentation. | LitMetric

Effects of xanthan gum and hydroxypropyl methylcellulose on the structure and physicochemical properties of triticale gluten during fermentation.

Int J Biol Macromol

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

Published: January 2025

The effects of 1 % xanthan gum (XG) and hydroxypropyl methylcellulose (HPMC) on the physicochemical and structural properties of triticale gluten (TG) during fermentation were investigated. Rheological analysis revealed that the addition of XG or HPMC decreased G' and G″ values, while increasing tanδ and recovery strain of triticale gluten during fermentation. Thermal gravimetric analysis demonstrated that triticale gluten added with XG after fermentation exhibited the highest residual mass, showing a 9.3 % increase compared to TG. Microscopic observations indicated that the addition of XG or HPMC during fermentation resulted in a more continuous and compact network structure of triticale gluten. Analysis of secondary structure, disulfide bond formation, and macromer content revealed that 1 % XG significantly enhanced the formation of interchain disulfide bonds (1.9 μmol/g), elevated the β-folding ratio (43.58 %), and increased the gluten-macromer content (2.2 %) during fermentation. Surface hydrophobicity and electrophoresis analyses suggested that the interaction between hydrocolloids and gluten enhanced the exposure of hydrophobic groups of gluten. This study offers insights into the potential applications of XG and HPMC in fermented triticale products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.139413DOI Listing

Publication Analysis

Top Keywords

triticale gluten
20
gluten fermentation
16
xanthan gum
8
gum hydroxypropyl
8
hydroxypropyl methylcellulose
8
properties triticale
8
addition hpmc
8
gluten
7
triticale
6
fermentation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!