FADD cooperates with Caspase-8 to positively regulate the innate immune response and promote apoptosis following bacterial infection in Japanese eel.

Fish Shellfish Immunol

Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China. Electronic address:

Published: January 2025

Fas-associated protein with Death Domain (FADD) is a crucial signaling component of apoptosis and a vital immunomodulator on inflammatory signaling pathways. However, information on FADD-mediated apoptosis and immune regulation is limited in teleost. We herein cloned a FADD homolog, AjFADD, from Japanese eel (Anguilla japonica). Expression analysis revealed that AjFADD was significantly induced by LPS, poly I:C, and Aeromonas hydrophila infection in vivo and in vitro. The expression of IFNs and IRFs, c-Rel and c-Fos, IL1 and TNF-α, and the essential antimicrobial peptide LEAP-2 in Japanese eel liver cells was enhanced by overexpressing AjFADD, with a significant decrease of those genes following knockdown AjFADD. Luciferase activity assay, flow cytometry, and wound healing results showed that AjFADD cooperated with AjCaspase-8 to promote apoptosis of HEK293 cells and Japanese eel liver cells infected with A. hydrophila. Furthermore, AjFADD and AjCaspase-8 co-localized in the cytoplasm and displayed a direct protein-protein interaction by immunoprecipitation. Our results collectively showed that FADD cooperated with Caspase-8 to positively regulate the innate immune response and promote apoptosis in response to the A. hydrophila challenge in Japanese eel.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2024.110110DOI Listing

Publication Analysis

Top Keywords

japanese eel
20
promote apoptosis
12
caspase-8 positively
8
positively regulate
8
regulate innate
8
innate immune
8
immune response
8
response promote
8
eel liver
8
liver cells
8

Similar Publications

FADD cooperates with Caspase-8 to positively regulate the innate immune response and promote apoptosis following bacterial infection in Japanese eel.

Fish Shellfish Immunol

January 2025

Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China. Electronic address:

Fas-associated protein with Death Domain (FADD) is a crucial signaling component of apoptosis and a vital immunomodulator on inflammatory signaling pathways. However, information on FADD-mediated apoptosis and immune regulation is limited in teleost. We herein cloned a FADD homolog, AjFADD, from Japanese eel (Anguilla japonica).

View Article and Find Full Text PDF

In recent years, the use of fish-derived probiotics in aquaculture has become more widespread. However, research on -derived probiotics is still limited. To evaluate the potential of probiotics for disease control in eel aquaculture, isolates were obtained from the intestinal tract of healthy .

View Article and Find Full Text PDF

Effects of luteinizing hormone-releasing hormone analog and pimozide on the release of luteinizing hormone and ovulation in artificially matured Japanese eel Anguilla japonica.

Comp Biochem Physiol A Mol Integr Physiol

October 2023

Fisheries Technology Institute Minamiizu Field Station, Japan Fisheries Research and Education Agency, 183-2 Irouzaki, Minamiizu, Kamo, Shizuoka 415-0156, Japan. Electronic address:

Pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), control oogenesis in all vertebrates. In particular, Lh plays a key role in stimulating the final oocyte maturation and subsequent ovulation. The biosynthesis and secretion of Lh are regulated by several neurohormones, including gonadotropin-releasing hormone (GnRH) and dopamine.

View Article and Find Full Text PDF
Article Synopsis
  • - Eels migrate to their spawning grounds using unknown routes, and simulations combine navigation solutions with ocean data to predict migration paths that balance time and energy costs.
  • - The study finds that eels should swim at speeds of 0.4-0.6 body-length per second to conserve energy for reproduction during migration, especially since they don’t refuel.
  • - Swimming deeper (200m or more) can help eels avoid unfavorable surface currents and seasonal impacts, though colder water temperatures at these depths may also pose challenges.
View Article and Find Full Text PDF

Artificial sexual maturation of eel () involves rearing in seawater and injecting salmon pituitary extract (SPE). The salinity of seawater and components of SPE influence hormonal activities of the eel pituitary, leading to gonad development. This study investigated the direct effects of salinity change and SPE treatment on the eel pituitary gland using primary cell cultures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!