Prokineticin 2 protein is diurnally expressed in PER2 containing clock neurons in the mouse suprachiasmatic nucleus.

Peptides

Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Published: January 2025

Expression of prokineticin 2 (PK2) mRNA in the suprachiasmatic nucleus (SCN), also knowns as the brain's clock, exhibits circadian oscillations with peak levels midday, zeitgeber time (ZT) 4, and almost undetectable levels during night. This circadian expression profile has substantially contributed to the suggested role of PK2 as an SCN output molecule involved in transmitting circadian rhythm of behavior and physiology. Due to unreliable specificity of PK2 antibodies, the 81 amino acid protein has primarily been studied at the mRNA level and correlation between circadian oscillating mRNAs and protein products are infrequent. Hence, data on PK2 protein expression in the SCN is lacking. In this study a thorough validation of a commercial PK2 antibody for immunohistochemistry (IHC) was performed followed by fluorescence IHC on SCN mouse brain sections at six consecutive ZTs over a 24-hour cycle (12:12 light-dark, ZT0=light ON whereas ZT12=light OFF). Data were visualized and processed using confocal microscopy. Results showed that PK2 protein expression diurnally oscillates with calculated peak expression ZT5:40 ± 1:40hour. Opposite than described for PK2 mRNA, PK2 immunoreactivity was detectable at all times during the 24-hour cycle. PK2 was primarily located in neurons of the shell compartment and > 80% of these neurons co-expressed the core clock protein PER2. In conclusion, PK2 protein expression oscillates as the mRNA, supporting the suggested role of PK2 as a SCN molecule involved in circadian rhythm regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2024.171339DOI Listing

Publication Analysis

Top Keywords

pk2 protein
12
protein expression
12
pk2
11
suprachiasmatic nucleus
8
pk2 mrna
8
suggested role
8
role pk2
8
pk2 scn
8
molecule involved
8
circadian rhythm
8

Similar Publications

Background: Improving the germination performance of bread wheat is an important breeding target in many wheat-growing countries where seedlings are often established in soils with high salinity levels. This study sought to characterize the molecular mechanisms underlying germination performance in salt-stressed wheat. To achieve this goal, a genome-wide association study (GWAS) was performed on 292 Iranian bread wheat accessions, including 202 landraces and 90 cultivars.

View Article and Find Full Text PDF

Prokineticin 2 protein is diurnally expressed in PER2 containing clock neurons in the mouse suprachiasmatic nucleus.

Peptides

January 2025

Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Expression of prokineticin 2 (PK2) mRNA in the suprachiasmatic nucleus (SCN), also knowns as the brain's clock, exhibits circadian oscillations with peak levels midday, zeitgeber time (ZT) 4, and almost undetectable levels during night. This circadian expression profile has substantially contributed to the suggested role of PK2 as an SCN output molecule involved in transmitting circadian rhythm of behavior and physiology. Due to unreliable specificity of PK2 antibodies, the 81 amino acid protein has primarily been studied at the mRNA level and correlation between circadian oscillating mRNAs and protein products are infrequent.

View Article and Find Full Text PDF

Decoding Epilepsy: Prickle2 and Multifaceted Molecular Pathway Connections.

Curr Pharm Des

January 2025

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China.

Background: The Prickle2 (Pk2) gene shows promising potential in uncovering the underlying causes of epilepsy, a neurological disorder that is currently not well understood. This paper utilizes the online tool PubMed to gather and condense information on the involvement of PCP channels and the associated roles of PCP pathway molecules in the onset of epilepsy. These findings are significant for advancing epilepsy treatment.

View Article and Find Full Text PDF

The tolerance of to high concentrations of bile acids is intricately linked to its potential as a probiotic. While the survival of yeast under high concentrations of bile acids has been demonstrated, the specific mechanisms of tolerance remain inadequately elucidated. This study aims to elucidate the tolerance mechanisms of CEN.

View Article and Find Full Text PDF

Different transcriptomic and metabolomic analysis of Saccharomyces cerevisiae BY4742 and CEN.PK2-1C strains.

Arch Microbiol

November 2024

The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.

To establish efficient yeast cell factories, it is necessary to understand the transcriptional and metabolic changes among different yeasts. Saccharomyces cerevisiae BY4742 and CEN.PK2-1C strains are originated from different yeast strains and are commonly used as model organisms and chassis cells in molecular biology study and synthetic biology-based natural production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!