The ability to control the growth and orientation of neurites over long distances has significant implications for regenerative therapies and the development of physiologically relevant brain tissue models. In this study, the forces generated on magnetic nanoparticles internalised within intracellular endosomes are used to direct the orientation of neuronal outgrowth in cell cultures. Following differentiation, neurite orientation was observed after 3 days application of magnetic forces to human neuroblastoma (SH-SY5Y) cells, and after 4 days application to rat cortical primary neurons. The direction of neurite outgrowth was quantified using a 2D Fourier transform analysis, showing agreement with the derived magnetic force vectors. Orientation control was found to be effective over areas >1cm using modest forces of ∼10 fN per endosome, apparently limited only by the local confluence of the cells. A bioinformatics analysis of protein expression in cells exposed to magnetic forces revealed changes to cell signaling and metabolic pathways resulting in enhanced carbohydrate metabolism, as well as the perturbation of processes related to cellular organisation and proliferation. Additionally, in cell culture regions where the measured force vectors converged, large (∼100 µm) SH-SY5Y neuroclusters loaded with nanoparticles were found, connected by unusually thick linear neurite fibres. This could suggest a magnetically driven enhancement of neurocluster growth, with the clusters themselves contributing to the local forces that direct outgrowth. Such structures, which have not been previously observed, could provide new insights into the development and possible enhancement of neural circuitry. STATEMENT OF SIGNIFICANCE: A magnetic force approach for directing outgrowth in neuronal cells over macroscopic areas is successfully demonstrated. Cells were incubated with magnetic nanoparticles which were sequestered into intracellular compartments. Permanent magnet arrays created local intracellular magnetic force vectors mediated via the internalized nanoparticles, which were found to precisely guide neurite orientation. Analysis of cellular protein expression suggested the mechanism for directed growth involved specific cell signaling and metabolic pathways. In addition, highly unusual straight and thick neural fibers were observed that connected large 'magnetic' spherical cell clusters. The results reported will advance nanotechnology and cell therapy for neuro-regeneration where magnetic forces could help to reconnect damaged neurons, or even build artificial neuronal architectures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2024.12.057DOI Listing

Publication Analysis

Top Keywords

magnetic forces
16
magnetic force
12
force vectors
12
magnetic
9
magnetic nanoparticles
8
neurite orientation
8
days application
8
protein expression
8
cell signaling
8
signaling metabolic
8

Similar Publications

The reduced dimensionality of thin transition metal dihalide films on single-crystal surfaces unlocks a diverse range of magnetic and electronic properties. However, achieving stoichiometric monolayer islands requires precise control over the growth conditions. In this study, we employ scanning probe microscopy to investigate the growth of MnI on Ag(111) via single-crucible evaporation.

View Article and Find Full Text PDF

Objectives: Detection of fat content in thymic lesions is essential to differentiate thymic hyperplasia from thymic tumors. This study assesses the reliability and efficacy of "iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantization" IDEAL-IQ magnetic resonance sequence in distinguishing thymic hyperplasia from low-risk thymoma and thymic lymphoma in adulthood.

Methods: Thirty patients with thymic hyperplasia, 28 low-risk thymomas, and 13 thymic lymphomas were respectively enrolled.

View Article and Find Full Text PDF

We have developed a 3-D acoustic radiation force impulse (ARFI) prostate imaging system to identify regions suspicious for cancer and guide a targeted prostate biopsy in a single visit. The system uses a side-fire transrectal probe and an automated rotation stage to acquire ARFI and B-mode image volumes, combined with 3-D visualization and targeting software to enable biopsy target identification and guide a transperineal (TP) biopsy. The system was tested in the first clinical trial of its kind, with subjects serially undergoing ARFI-guided targeted TP biopsy, multiparametric magnetic resonance imaging (mpMRI)-ultrasound fusion TP biopsy, and systematic sampling TP biopsy.

View Article and Find Full Text PDF

Influence of nonequilibrium vibrational dynamics on spin selectivity in chiral molecular junctions.

J Chem Phys

January 2025

Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany.

We explore the role of molecular vibrations in the chirality-induced spin selectivity (CISS) effect in the context of charge transport through a molecular nanojunction. We employ a mixed quantum-classical approach that combines Ehrenfest dynamics for molecular vibrations with the hierarchical equations of motion method for the electronic degrees of freedom. This approach treats the molecular vibrations in a nonequilibrium manner, which is crucial for the dynamics of molecular nanojunctions.

View Article and Find Full Text PDF

Dynamically Assembling Magnetic Nanochains as New Generation of Swarm-Type Magneto-Mechanical Nanorobots Affecting Biofilm Integrity.

Adv Healthc Mater

January 2025

Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 Route de Narbonne, Toulouse, 31400, France.

Bacterial resistance is gaining ground and novel, unconventional strategies are required to improve antibiotic treatments. As a synthetic analog of planktonic bacilli, the natural bacterial swimmers that can penetrate bacterial biofilms, ultra-short propelling magnetic nanochains are presented as bioinspired magnetic nanorobots, enhancing the antibiotic treatment in biofilm-forming Staphylococcus epidermidis. Propelling nanochains, activated by a low intensity (<20 mT) and low frequency (<10 Hz) rotating magnetic field (RMF), prompt the otherwise resistant biofilm-forming bacteria to become sensitive to methicillin, resulting in the killing of 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!