The subiculum is the main output part of the hippocampal formation and is important for learning and memory. According to connection studies, the distal and proximal regions of the subiculum project to brain regions related to spatial and emotional memories, respectively. Our previous morphological studies indicated that the ventral subiculum (vSub) consists of two regions, the distal subiculum (Sub1) and the proximal subiculum (Sub2), whereas the dorsal subiculum (dSub) seems to comprise only one region (Sub1). However, the connection studies have reported that the dSub contains two regions. Accordingly, we hypothesized that the dSub may indicate "one region" and "two regions" at different dorsoventral levels. To confirm this hypothesis, serial sections of the dSub were prepared and labeled for nitric oxide synthase and Purkinje cell protein 4 as markers dividing the subiculum. As a result, vSub showed two regions, Sub1 and Sub2, whereas the dorsal tip of the subiculum showed one region (Sub1), as shown in our previous studies. However, two regions were observed in the dorsal sections. Accordingly, the same dSub indicated a different number of regions at different observation levels. To avoid confusion, we propose dividing the subiculum into Sub1 and Sub2 by immunoreactivities for subicular markers, instead of a rough division into the distal/proximal parts or the dorsal/ventral parts. Furthermore, we confirmed that Sub2 projected to the lateral septum. This finding is consistent with the fact that the proximal-ventral subiculum are involved in emotional memory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2024.12.048DOI Listing

Publication Analysis

Top Keywords

dorsal subiculum
12
subiculum
11
connection studies
8
subiculum sub1
8
sub2 dorsal
8
region sub1
8
sections dsub
8
dividing subiculum
8
sub1 sub2
8
regions
7

Similar Publications

Ketamine administration during adolescence impairs synaptic integration and inhibitory synaptic transmission in the adult dentate gyrus.

Prog Neurobiol

January 2025

Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile; Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile. Electronic address:

Ketamine administration during adolescence affects cognitive performance; however, its long-term impact on synaptic function and neuronal integration in the hippocampus a brain region critical for cognition remains unclear. Using functional and molecular analyses, we found that chronic ketamine administration during adolescence exerts long-term effects on synaptic integration, expanding the temporal window in an input-specific manner affecting the inner molecular layer but not the medial perforant path inputs in the adult mouse dorsal hippocampal dentate gyrus. Ketamine also alters the excitatory/inhibitory balance by reducing the efficacy of inhibitory inputs likely due to a reduction in parvalbumin-positive interneurons number and function.

View Article and Find Full Text PDF

Instruction-induced modulation of the visual stream during gesture observation.

Neuropsychologia

January 2025

Neuroscience Area, SISSA, Trieste, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma-Tor Vergata, Roma, Italy.

Although gesture observation tasks are believed to invariably activate the action-observation network (AON), we investigated whether the activation of different cognitive mechanisms when processing identical stimuli with different explicit instructions modulates AON activations. Accordingly, 24 healthy right-handed individuals observed gestures and they processed both the actor's moved hand (hand laterality judgment task, HT) and the meaning of the actor's gesture (meaning task, MT). The main brain-level result was that the HT (vs MT) differentially activated the left and right precuneus, the left inferior parietal lobe, the left and right superior parietal lobe, the middle frontal gyri bilaterally and the left precentral gyrus.

View Article and Find Full Text PDF

The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE).

View Article and Find Full Text PDF

Numerous studies support the role of dopamine in modulating aggression, but the exact neural mechanisms remain elusive. Here we show that dopaminergic cells in the ventral tegmental area (VTA) can bidirectionally modulate aggression in male mice in an experience-dependent manner. Although VTA dopaminergic cells strongly influence aggression in novice aggressors, they become ineffective in expert aggressors.

View Article and Find Full Text PDF

Hypertension, if untreated, can disrupt the blood-brain-barrier (BBB) and reduce cerebral flow in the central nervous system (CNS) inducing hippocampal atrophy, potentially leading to cognitive deficits and vascular dementia. Spontaneous hypertensive rats (SHR) demonstrated neuroplastic alterations in the hippocampus, hyperlocomotion and memory deficits in males. Cerebrolysin (CBL), a neuropeptide preparation, induces synaptic and neuronal plasticity in various populations of neurons and repairs the integrity of the BBB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!