Small molecule-driven LKB1 deacetylation is responsible for the inhibition of hepatic lipid response in NAFLD.

J Lipid Res

Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China. Electronic address:

Published: January 2025

Nonalcoholic fatty liver disease (NAFLD) is a progressive condition characterized by ectopic fat accumulation in the liver, for which no FAD-approved drugs currently exist. Emerging evidence highlights the role of liver kinase B1 (LKB1), a key metabolic regulator, has been proposed in NAFLD, particularly in response to excessive nutrient levels. However, few agents have been identified that can prevent the progression of nonalcoholic steatohepatitis (NASH) by targeting LKB1 deacetylation. Through comprehensive screening of our in-house chemical library, we identified tranilast, a small molecule with remarkable inhibitory efficacy against lipid deposition induced by palmitic acid/oleic acid (PO). In this study, we investigated the novel biological function and mechanism of tranilast in regulating hepatic lipid response in NAFLD, focusing on its role in LKB1 deacetylation within hepatocytes. Our findings demonstrate that tranilast effectively reduced hepatic steatosis, inflammation, and fibrosis in NASH models induced by high-fat and high-cholesterol (HFHC) and methionine choline-deficient (MCD) diets. Mechanistic analysis using RNA sequencing revealed that tranilast mitigated hepatic lipid response by promoting LKB1 deacetylation and activating AMPK. Notably, in vivo experiments showed that the beneficial effects of tranilast in MCD diet-induced NASH model were reversed by the compound C (C-C), a known AMPK inhibitor, confirming that tranilast's effects on hepatic lipid response are mediated through the AMPK pathway. In summary, tranilast inhibits hepatic lipid response in NAFLD through LKB1 deacetylation, providing robust experimental evidence for the role of LKB1 in NAFLD. These findings position tranilast as a promising therapeutic candidate for the pharmacological management of metabolic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jlr.2024.100740DOI Listing

Publication Analysis

Top Keywords

lkb1 deacetylation
20
hepatic lipid
20
lipid response
20
response nafld
12
role lkb1
8
lkb1
7
tranilast
7
hepatic
6
lipid
6
response
6

Similar Publications

Small molecule-driven LKB1 deacetylation is responsible for the inhibition of hepatic lipid response in NAFLD.

J Lipid Res

January 2025

Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China. Electronic address:

Nonalcoholic fatty liver disease (NAFLD) is a progressive condition characterized by ectopic fat accumulation in the liver, for which no FAD-approved drugs currently exist. Emerging evidence highlights the role of liver kinase B1 (LKB1), a key metabolic regulator, has been proposed in NAFLD, particularly in response to excessive nutrient levels. However, few agents have been identified that can prevent the progression of nonalcoholic steatohepatitis (NASH) by targeting LKB1 deacetylation.

View Article and Find Full Text PDF

Smooth muscle liver kinase B1 inhibits foam cell formation and atherosclerosis via direct phosphorylation and activation of SIRT6.

Cell Death Dis

August 2023

National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.

Foam cell formation is a hallmark of the early phase of atherosclerosis. Growing evidence has demonstrated that vascular smooth muscle cells (VSMCs) comprise a considerable proportion of foam cells. Liver kinase B1 (LKB1) plays a crucial part in cardiovascular diseases.

View Article and Find Full Text PDF

AMPK can activate nicotinamide phosphoribosyltransferase (NAMPT), increasing the ratio of oxidized nicotinamide adenine dinucleotide (NAD+)/reduced nicotinamide adenine dinucleotide (NADH) ratio, leading to the activation of the energy receptor SIRT1. This pathway is known as the AMPK/SIRT1 signaling pathway. SIRT1 deacetylates and activate LKB1, which is activated by phosphorylation of AMPK (Thr172) and inhibited by phosphorylase-mediated dephosphorylation of AMPK.

View Article and Find Full Text PDF

SZC-6, a small-molecule activator of SIRT3, attenuates cardiac hypertrophy in mice.

Acta Pharmacol Sin

March 2023

National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

Sirtuin3 (SIRT3), a class III histone deacetylase, is implicated in various cardiovascular diseases as a novel therapeutic target. SIRT3 has been proven to be cardioprotective in a model of Ang II-induced cardiac hypertrophy. However, a few small-molecule compounds targeting deacetylases could activate SIRT3.

View Article and Find Full Text PDF

We previously demonstrated that pan-HDAC inhibitors could limit escape from MEK inhibitor (MEKi) therapy in uveal melanoma (UM) through suppression of AKT and YAP/TAZ signaling. Here, we focused on the role of specific HDACs in therapy adaptation. Class 2 UM displayed higher expression of HDACs 1, 2, and 3 than Class 1, whereas HDACs 6, 8, and 11 were uniformly expressed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!