Ethnopharmacological Relevance: Yi-Shen-Hua-Shi granules (YSHSG) have been shown to improve kidney function in various renal disorders, which are characterized by the sudden decline and impairment of kidney function.

Aim Of The Study: To investigate the precise mechanisms and targets of YSHSG in combating sepsis-induced AKI.

Materials And Methods: Through network pharmacology, the active ingredients, main target proteins, and related signaling pathways of YSHSG in the treatment of sepsis-induced AKI were predicted. The AKI model was induced by sepsis using the cecal ligation and puncture (CLP) technique. Prior to the operation, YSHSG was administered intragastrically once daily for 1 week. Blood and kidney tissues were collected 48 h post-CLP to verify the network pharmacology analysis.

Results: The core target proteins of YSHSG in the treatment of sepsis-induced AKI include AKT1, JUN, IL6, PTGS2, NFKBIA, MAPK3, Caspase-3 and MMP9, which were further confirmed by molecular docking. Pathway analyses such as Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) show that YSHSG plays a role in protecting the kidneys from sepsis-induced AKI through the PI3K/AKT, TNF, and IL17 signaling pathways. These findings were validated using qPCR and western blotting. In vivo experiments demonstrated that YSHSG inhibits the activation of TNF and IL17 signaling pathways while protecting against deactivation of the PI3K/AKT signaling pathway in sepsis-induced AKI. YSHSG also exhibits an effect on attenuating inflammation response and pyroptosis processes associated with the PI3K/AKT, TNF, and IL17 signaling pathways.

Conclusion: YSHSG mitigated sepsis-induced AKI by influencing the PI3K/AKT, TNF, and IL17 signaling pathways associated with inflammation and pyroptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2025.119320DOI Listing

Publication Analysis

Top Keywords

sepsis-induced aki
20
signaling pathways
16
tnf il17
16
il17 signaling
16
network pharmacology
12
pi3k/akt tnf
12
yshsg
9
molecular docking
8
yi-shen-hua-shi granules
8
target proteins
8

Similar Publications

Ethnopharmacological Relevance: Yi-Shen-Hua-Shi granules (YSHSG) have been shown to improve kidney function in various renal disorders, which are characterized by the sudden decline and impairment of kidney function.

Aim Of The Study: To investigate the precise mechanisms and targets of YSHSG in combating sepsis-induced AKI.

Materials And Methods: Through network pharmacology, the active ingredients, main target proteins, and related signaling pathways of YSHSG in the treatment of sepsis-induced AKI were predicted.

View Article and Find Full Text PDF

Objective: Ferroptosis has been described in association with acute kidney injury (AKI)-induced sepsis. Fibronectin type III domain containing protein 5 (FNDC5)/irisin plays a crucial role in renal protection. The objective of this study was to investigate whether FNDC5/irisin is involved in AKI-induced sepsis by modulating ferroptosis, and the molecular mechanisms that may be involved.

View Article and Find Full Text PDF

Downregulation of the immunoproteasome subunit PSMB8 attenuates sepsis-associated acute kidney injury through the NF-κB pathway.

Immunobiology

December 2024

Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, China. Electronic address:

Sepsis-associated acute kidney injury (S-AKI) is a prevalent and life-threatening complication in hospitalized and critically ill patients. Recent researches indicates that immunoproteasome, especially proteasome 20S subunit beta 8 (PSMB8), is highly associated with various kidney diseases. This study aims to investigate the potential involvement of PSMB8 in S-AKI and its impact on apoptosis and inflammation.

View Article and Find Full Text PDF

[Effect and related mechanism of acetate in alleviating acute kidney injury in septic rats through G-protein coupled receptor 43].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue

November 2024

Department of Critical Medicine Center, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China. Corresponding author: Yu Xiangyou, Email:

Objective: To explore the protective effect and mechanism of acetate on sepsis-induced acute kidney injury (AKI) in rats.

Methods: Male Sprague-Dawley (SD) rats were divided into sham operation group (Sham group), sepsis group caused by cecal ligation and puncture (CLP group), and acetate pretreatment group [NaA group, gavage sodium acetate (NaA) 300 mg/kg twice a day for 7 consecutive days before CLP] using a random number table method, with 7 rats in each group. The blood was taken from the main abdominal artery 24 hours after modeling, and renal tissue was collected from the rats.

View Article and Find Full Text PDF

Urinary proteomics identifies distinct immunological profiles of sepsis associated AKI sub-phenotypes.

Crit Care

December 2024

Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington Medical Center, 325 9th Avenue, Seattle, WA, 98104, USA.

Background: Patients with sepsis-induced AKI can be classified into two distinct sub-phenotypes (AKI-SP1, AKI-SP2) that differ in clinical outcomes and response to treatment. The biologic mechanisms underlying these sub-phenotypes remains unknown. Our objective was to understand the underlying biology that differentiates AKI sub-phenotypes and associations with kidney outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!