G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and are highly effective targets for therapeutic drugs. GPCRs couple different downstream effectors, including G proteins (such as Gi/o, Gs, G12, and Gq) and β-arrestins (such as β-arrestin 1 and β-arrestin 2) to mediate diverse cellular and physiological responses. Biased signaling allows for the specific activation of certain pathways from the full range of receptors' signaling capabilities. Targeting more variable allosteric sites, which are spatially different from the highly conserved orthosteric sites, represents a novel approach in biased GPCR drug discovery, leading to innovative strategies for targeting GPCRs. Notably, the emergence of cryptic allosteric sites on GPCRs has expanded the repertoire of available drug targets and improved receptor subtype selectivity. Here, we conduct a summary of recent progress in the structural determination of cryptic allosteric sites on GPCRs and elucidate the biased signaling mechanisms induced by allosteric modulators. Additionally, we discuss means to identify cryptic allosteric sites and design biased allosteric modulators based on cryptic allosteric sites through structure-based drug design, which is an advanced pharmacotherapeutic approach for treating GPCR-associated diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2024.107574DOI Listing

Publication Analysis

Top Keywords

allosteric sites
24
cryptic allosteric
20
allosteric
8
protein-coupled receptors
8
drug discovery
8
biased signaling
8
sites gpcrs
8
allosteric modulators
8
sites
7
biased
5

Similar Publications

Promising clinical evidence suggests that psychedelic compounds, like lysergic acid diethylamide (LSD), have therapeutic value for treatment of psychiatric disorders. However, they often produce hallucinations and dissociative states, likely mediated by the serotonin (5-HT) receptor 5-HT, raising challenges regarding therapeutic scalability. Given the reported antipsychotic effects of cannabidiol (CBD) and its promiscuous binding at many receptors, we assessed whether CBD could modulate 5-HT signaling.

View Article and Find Full Text PDF

Importance: Fall risk and cognitive impairment are prevalent and burdensome in Parkinson disease (PD), requiring efficacious, well-tolerated treatment.

Objective: To evaluate the safety and efficacy of TAK-071, a muscarinic acetylcholine M1 positive allosteric modulator, in participants with PD, increased fall risk, and cognitive impairment.

Design, Setting, And Participants: This phase 2 randomized double-blind placebo-controlled crossover clinical trial was conducted from October 21, 2020, to February 27, 2023, at 19 sites in the US.

View Article and Find Full Text PDF

RbgA (ribosome biogenesis GTPase A) is involved in the maturation of later stages of the 50S ribosomal subunit by associating with the 45S ribosomal subunit. However, this binding relies on the specific nucleotide-bound state of RbgA-GTP-bound state is more favorable compared GDP-bound state, attributed to the conformational variations between those states. Therefore, to explore the conformational changes of RbgA, all-atom MD simulations of RbgA were carried out under various nucleotide bound states (GDP, GTP, GTP-Mg and GMPPNP-Mg).

View Article and Find Full Text PDF

Allosteric regulation is a widespread strategy employed by several proteins to transduce chemical signals and perform biological functions. Metal sensor proteins are exemplary in this respect, e.g.

View Article and Find Full Text PDF

Investigation of serotonin-receptor interactions, stability and signal transduction pathways via molecular dynamics simulations.

Biophys Chem

December 2024

Department of Chemistry and Center for Atomic, Molecular, Optical Sciences and Technologies (CAMOST), Indian Institute of Science, Education and Research (IISER) Tirupati, Yerpedu Mandal, Tirupati 517619, India. Electronic address:

Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT receptor (5HTR) via electrostatic interactions. Key residues for electrostatic interactions were identified via bond distance analysis and frustration analysis methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!