Gut microbiota protect against colorectal tumorigenesis through lncRNA Snhg9.

Dev Cell

Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310029, Zhejiang, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310029, Zhejiang, China. Electronic address:

Published: December 2024

The intestinal microbiota is a key environmental factor in the development of colorectal cancer (CRC). Here, we report that, in the context of mild colonic inflammation, the microbiota protects against colorectal tumorigenesis in mice. This protection is achieved by microbial suppression of the long non-coding RNA (lncRNA) Snhg9. Snhg9 promotes tumor growth through inhibition of the tumor suppressor p53. Snhg9 suppresses p53 activity by dissociating the p53 deacetylase sirtuin 1 (SIRT1) from the cell cycle and apoptosis regulator 2 (CCAR2). Consequently, the depletion of the microbiota by antibiotics causes upregulation of Snhg9 and accelerates CRC progression. Moreover, Snhg9 is functionally conserved. Human SNHG9 promotes tumor growth via the same mechanism as mouse Snhg9, despite their low sequence similarity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devcel.2024.12.013DOI Listing

Publication Analysis

Top Keywords

colorectal tumorigenesis
8
snhg9
8
lncrna snhg9
8
snhg9 promotes
8
promotes tumor
8
tumor growth
8
gut microbiota
4
microbiota protect
4
protect colorectal
4
tumorigenesis lncrna
4

Similar Publications

The probiotic gut microbiome and its metabolites are pivotal in regulating host metabolism, inflammation, and immunity. Host genetics, colonization at birth, the host lifestyle, and exposure to diseases and drugs determine microbial composition. Dysbiosis and disruption of homeostasis in the beneficial microbiome have been reported to be involved in the tumorigenesis and progression of colorectal cancer (CRC).

View Article and Find Full Text PDF

Steroid hormone-induced wingless ligands tune female intestinal size in Drosophila.

Nat Commun

January 2025

Department of Biology, Institute of Genetics, The Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.

Female reproduction comes at great expense to energy metabolism compensated by extensive organ adaptations including intestinal size. Upon mating, endocrine signals orchestrate a 30% net increase of absorptive epithelium. Mating increases production of the steroid hormone Ecdysone released by the Drosophila ovaries that stimulates intestinal stem cell (ISC) divisions.

View Article and Find Full Text PDF

Molecular Mechanisms of Synergistic Effect of PRIMA-1 and Oxaliplatin in Colorectal Cancer With Different p53 Status.

Cancer Med

January 2025

Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, People's Republic of China.

Background: The toxicity and drug resistance associated with oxaliplatin (L-OHP) limit its long-term use for colorectal cancer (CRC) patients. p53 mutation is a common genetic trait of CRC. PRIMA-1 (APR-246, eprenetapopt) restores the DNA-binding capacity of different mutant P53 proteins.

View Article and Find Full Text PDF

Background: Colorectal adenocarcinoma [COAD] is a prevalent and lethal form of cancer. Understanding the molecular mechanisms underlying COAD progression is crucial for developing effective diagnostic and therapeutic strategies.

Methods: This study aims to explore wound healing-related genes in COAD and their potential roles in tumorigenesis and prognosis using in silico and in vitro methodology.

View Article and Find Full Text PDF

RNF112, whose transcription is regulated by KLF4, inhibits colorectal cancer growth via promoting ubiquitin-dependent degradation of NAA40.

Cell Biol Toxicol

January 2025

Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, 110004, Shenyang, China.

Background: RING finger protein 112 (RNF112) exerts a key role in human tumors. However, its biological function in colorectal cancer (CRC) has not been discussed. We aimed to explore the function and molecular mechanism of RNF112 in CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!