A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel glycosyltransferase gene RsUGT71B5 from Raphanus sativus L. regulated root growth and seedling development. | LitMetric

A novel glycosyltransferase gene RsUGT71B5 from Raphanus sativus L. regulated root growth and seedling development.

Plant Physiol Biochem

College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China. Electronic address:

Published: January 2025

The plant UDP-glycosyltransferases (UGTs) regulate several metabolic processes during root growth and development by conjugating sugar moieties to various small molecules. RsUGT71B5 is a novel UDP-glycosyltransferase in Raphanus sativus L., but its biological function is not well established. In this study, we generated RsUGT71B5-overexpressing transgenic Arabidopsis lines to determine the mechanisms by which RsUGT71B5 regulated root growth and development. Ectopic overexpression of RsUGT71B5 significantly enhanced root growth and seedling development. In culture medium supplemented with 1-3% exogenous sucrose, RsUGT71B5 overexpression increased the root length and surface area in the transgenic Arabidopsis lines compared with the wild type. Furthermore, transgenic RsUGT71B5 overexpression partially suppressed the inhibitory effects of 12% sucrose on root growth and development. RNA sequencing data analysis identified 102 differential expressed genes (DEGs), including 56 upregulated and 46 downregulated genes, in the transgenic RsUGT71B5 overexpression lines (OE). QRT-PCR analyses confirmed significant upregulation of glutathione S-transferases such as AT1G02930 (GSTF6) and AT1G02920 (GSTF7) in the transgenic RsUGT71B5 overexpression lines. KEGG pathway analyses of the DEGs showed that RsUGT71B5 overexpression regulated glutathione and sugar metabolism. In summary, this study demonstrated that RsUGT71B5 regulated root growth and development by modulating glutathione and sugar metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2025.109473DOI Listing

Publication Analysis

Top Keywords

root growth
24
rsugt71b5 overexpression
20
growth development
16
regulated root
12
transgenic rsugt71b5
12
rsugt71b5
10
raphanus sativus
8
growth seedling
8
seedling development
8
transgenic arabidopsis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!