One-step biomineralization to synthesize reusable CRL@ZnCo-MOF for boosting lipase stability and sustainable dibutyl phthalate removal.

Int J Biol Macromol

Key Laboratory of Chem-Biosensing of Anhui Province, Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, China. Electronic address:

Published: January 2025

Adsorption and biodegradation are two important means to remove the pollutants from the environment, but how to combine them and improve the catalytic performance and stability of free enzyme are facing great challenges. Herein, lipase from Candida rugosa (CRL) was immobilized into bimetallic ZnCo-MOF by biomineralization, which not only significantly improved the catalytic activity and stability of CRL but also endowed it with excellent reusability. Furthermore, CRL@ZnCo-MOF established a synergetic system of combined adsorption and enzymatic degradation for the sustainable removal of dibutyl phthalate (DBP) in actual water environment. The adsorption of DBP by CRL@ZnCo-MOF with mesoporous structure is mainly carried out by the monolayer adsorption via chemical adsorption, wherein the interaction between them is predominantly mediated by the hydrogen bonds and coordination bonds of MOF and DBP. Moreover, due to the ester bond cleavage ability of CRL, the DBP was degradated to less toxic monobutyl phthalate (MBP) and phthalic acid (PA) by CRL@ZnCo-MOF. Therefore, this study provides new insights into the development of novel approaches for the treatment of pollutants using enzyme@MOF biocomposite through the integration of adsorption-biodegradation effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.139460DOI Listing

Publication Analysis

Top Keywords

dibutyl phthalate
8
adsorption
5
one-step biomineralization
4
biomineralization synthesize
4
synthesize reusable
4
crl@znco-mof
4
reusable crl@znco-mof
4
crl@znco-mof boosting
4
boosting lipase
4
lipase stability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!