Ocean acidification (OA) and global warming (GW) drive a variety of responses in seagrasses that may modify their carbon metabolism, including the dissolved organic carbon (DOC) fluxes and the organic carbon stocks in upper sediments. In a 45-day full-factorial mesocosm experiment simulating forecasted CO and temperature increase in a Cymodocea nodosa community, we found that net community production (NCP) was higher under OA conditions, particularly when combined with warming (i.e., synergistic effect). Moreover, under OA conditions, an increase in aboveground biomass and photosynthetic shoot area was recorded. Interestingly, DOC fluxes were reduced when exposed to OA; however, an increase occurred when both factors acted together (i.e., antagonistic effect), which was attributable to increased DOC release by plants. Our results suggest that C. nodosa populations in temperate latitude may favor blue carbon service in future scenarios of OA and GW by increasing the NCP, the DOC export with lower labile:recalcitrant ratio, and accumulating more organic carbon in upper sediments. These findings offer additional arguments for the urgent need to protect and conserve this valuable ecosystem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2024.117501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!