Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To explore the dynamic molecular responses to CO-driven ocean acidification (OA) during the early developmental stages of sea urchins, gametes of Strongylocentrotus intermedius were fertilized and developed to the four-armed larva stage in either natural seawater (as a control; pH = 7.99 ± 0.01) or acidified conditions (ΔpH = -0.3, -0.4, and - 0.5 units) according to the prediction for ocean pH by the end of this century. Specimens from five developmental stages (fertilization, cleavage, blastula, prism, and four-armed larva) were collected and comparative microRNA (miRNA) and mRNA transcriptome analyses were performed. The results showed that 1) a total of 22,224 differentially expressed genes (DEGs) and 51 differentially expressed miRNAs (DEMs) were identified in the OA-treated groups compared with the control group. 2) The numbers of both DEGs and DEMs were the largest at the blastula stage, indicating dramatic changes in gene expression. 3) Five "miR-1/DEG" modules were identified as potential biomarkers reflecting the response of sea urchins to OA during the early developmental period. 4) The PI3K/Akt signaling pathway was a key pathway involved in the response of S. intermedius to OA in its early developmental stages. This study deepens our understanding of the dynamic molecular regulatory mechanisms underlying sea urchin responses to CO-driven OA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2024.117514 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!