The aim of this study was to reveal the mechanism of cold stimulation (CS)-bronchial epithelial cells (BECs) derived exosomes (CS-BECs-exo) aggravated sepsis induced acute lung injury (SALI). CS-BECs-exo were separated by differential centrifugation and were characterized. Proteomics, immunoprecipitation, and RAGE knockout (RAGE) mice were used to investigate the mechanism of CS-BECs-exo aggravated SALI. The results of transmission electron microscope (TEM) showed that CS-BECs-exo showed a double-layer membrane structure like a saucer. Nanoparticle tracking analysis (NTA) particle size analysis showed that the average particle size of CS-BECs-exo was 123.6 nm. The results of proteomics showed that the expression level HMGB1 was significantly increased in CS-BECs-exo compared with BECs-exo. CS-BECs-exo significantly increased oxidative stress and inflammatory reaction of SALI. In addition, CS-BECs-exo significantly increased RAGE and decreased the levels of Nrf-2 and OH-1. RAGE knockout (RAGE KO) and silence of RAGE (RAGE siRNA) significantly canceled the effects of CS-BECs-exo on SALI. HMGB1 knockout (HMGB1) and silence of HMGB1 also significantly (HMGB1 siRNA) canceled the effects of CS-BECs-exo on SALI. In conclusion, CS-BECs-exo aggravated ALI in sepsis via HMGB1/RAGE/Nrf-2/OH-1 signal pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2024.12.007DOI Listing

Publication Analysis

Top Keywords

epithelial cells
12
cs-becs-exo aggravated
12
cs-becs-exo
11
bronchial epithelial
8
derived exosomes
8
rage knockout
8
knockout rage
8
particle size
8
cs-becs-exo increased
8
sirna canceled
8

Similar Publications

We studied the effect of acteoside on a model of human corneal epithelial cells (HCEC) injury induced by HO. HCEC were divided into 4 groups and cultured for 24 h in normal medium (intact and control groups, respectively), or in a medium containing DMSO or 160 μM acteoside (DMSO and acteoside groups, respectively). Then, HO solution was added to HCEC for 4 h, except for intact cells.

View Article and Find Full Text PDF

Mediating role of blood metabolites in the relationship between immune cell traits and sepsis: a Mendelian randomization and mediation analysis.

Inflamm Res

January 2025

Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, 610041, People's Republic of China.

Background: A significant association between immune cells and sepsis has been suggested by observational studies. However, the precise biological mechanisms underlying this association remain unclear. Therefore, we employed a Mendelian randomization (MR) approach to investigate the causal relationship between immune cells and genetic susceptibility to sepsis, and to explore the potential mediating role of blood metabolites.

View Article and Find Full Text PDF

Skin epithelial stem cells correct aberrancies induced by oncogenic mutations. Oncogenes invoke different strategies of epithelial tolerance; while wild-type cells outcompete β-catenin-gain-of-function (βcatGOF) cells, Hras cells outcompete wild-type cells. Here we ask how metabolic states change as wild-type stem cells interface with mutant cells and drive different cell-competition outcomes.

View Article and Find Full Text PDF

Background: The pathogenesis of acute kidney injury (AKI) is not fully understood. Tax1-binding protein 1 (TAX1BP1) modulates inflammation and apoptosis through the NF-kB signaling pathway, however, its specific role in ischemic AKI remains unclear.

Methods: We injected a TAX1BP1 overexpression plasmid into the tail vein of male C57BL/6 mice, followed by clamping the bilateral renal arteries to induce AKI.

View Article and Find Full Text PDF

Deoxyhypusine synthase (DHPS) is an enzyme encoded by the DHPS gene, with high expression in various cancers, including ovarian cancer (OC). DHPS regulates the translation initiation factor EIF5A, and EIF5A2 knockout inhibits OC tumor growth and metastasis by blocking the epithelial-to-mesenchymal transition (EMT) and the TGFβ pathway. In this study, we show that DHPS is amplified in OC patients, and its elevated expression correlates with poor survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!