Dual-template epitope imprinted nanoparticles for anti-glycolytic tumor-targeted treatment.

J Colloid Interface Sci

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. Electronic address:

Published: December 2024

Glycolysis provides tumors with abundant nutrients through glucose (Glu) metabolism. As a therapeutic target, precise targeting and effective inhibition of the glycolysis process remains a major challenge in anti-metabolic therapy. In this study, a novel dual-template molecularly imprinted polymer (D-MIP), capable of specifically recognizing glucose transporter member 1 (GLUT1) and hexokinase-2 (HK2) was prepared for anti-glycolytic tumor therapy. The imprinting factors of D-MIP for the recognition of the template molecules, the GLUT1 epitope and the HK2 epitope, were 2.1 and 2.5, respectively, enabling specific recognition of the entire target protein. Targeting GLUT1 with D-MIP could impede its Glu uptake, while simultaneously inhibiting the activity of cytoplasmic HK2, thereby reducing the metabolic rate of Glu. Cell experiments demonstrated that inhibition of HK2 resulted in downregulation of the downstream, products glucose-6-phosphate (6PG) and lactate (LA). In vitro and in vivo experimental results indicated that D-MIP exhibited significant targeting and inhibitory effects on GLUT1 and HK2, respectively, which suppressed tumor glycolysis and induced apoptosis in MCF-7 cells. Furthermore, mouse tumor models and hematoxylin-eosin (H&E) staining confirmed the excellent anti-tumor efficacy and favorable biocompatibility of D-MIP. This work represents the first design and development of a dual-template imprinted polymer targeting key transport channels and metabolic enzymes involved in glycolysis, advancing the research and application of anti-glycolytic tumor therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.12.227DOI Listing

Publication Analysis

Top Keywords

imprinted polymer
8
anti-glycolytic tumor
8
tumor therapy
8
d-mip
5
hk2
5
dual-template epitope
4
epitope imprinted
4
imprinted nanoparticles
4
nanoparticles anti-glycolytic
4
anti-glycolytic tumor-targeted
4

Similar Publications

Oxidized low-density lipoprotein (oxLDL) is the leading cause of atherosclerosis and cardiovascular disease development. An enzyme-linked immunosorbent assay (ELISA)-mimic system for sensitive and specific oxLDL determination was developed using selective aptamer-molecularly imprinted polymer nanoparticles (AP-MIP NP) coupled with an immunology-based colorimetric assay. The AP-MIP NP were synthesized using solid-phase molecular imprinting by incorporating aptamers into the MIP NP cavities.

View Article and Find Full Text PDF

The sensitive Bisphenol A (BPA) detection by an electrochemical sensor based on gold nanoparticle-doped molecularly imprinted polymer was successfully improved. This study describes the development of a method for BPA detection in both aqueous solution and real water samples using N-methacroyl-(L)-cysteine methyl ester and N-methacryloyl-(L)-phenylalanine methyl ester coated pencil graphite electrodes modified with AuNPs by differential pulse voltammetry (DPV). Importantly, AuNPs, which increase the electroactivity, were used to increase the surface area of a BPA-imprinted pencil graphite electrode (MIP PGE) sensor.

View Article and Find Full Text PDF

Photocatalytic Organic Semiconductor-Bacteria Imprinted Polymers for Highly Selective Determination of at the Single-Cell Level.

Anal Chem

January 2025

Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.

This work utilized a combination of photocatalytic organic semiconductors and bacteria to create a photocatalytic organic semiconductor-bacterial biomixture system based on a bacteria imprinted polymers (OBBIPs-PEC) sensor, for the detection of with high sensitivity in "turn-on" mode at the single-cell level. This outstanding sensor arises from an integration of two different types of semiconductor materials to form heterojunctions. As well this sensor involves combining a semiconductor material with cationic side chains and an electron transport chain within a natural cellular environment, in which the cationic side chain of poly(fluorene--phenylene) organic semiconductor at 2-(4-mesyl-2-nitrobenzoyl)-1,3-cyclohexanedione (PFP-OC@MNC) demonstrated the ability to penetrate the cell membrane of and interact with specific binding sites through electrostatic interactions.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a notoriously aggressive primary brain tumor characterized by elevated recurrence rates and poor overall survival despite multimodal treatment. Local treatment strategies for GBM are safer and more effective alternatives to systemic chemotherapy, directly tackling residual cancer cells in the resection cavity by circumventing the blood-brain barrier. Molecularly imprinted polymers (MIPs) are promising drug delivery systems due to their high-affinity binding cavities that enable tailored release kinetics.

View Article and Find Full Text PDF

Development of a Silver-Based MOF Oxidase-Like nanozyme modified with molecularly imprinted polymer for sensitive and selective colorimetric detection of quercetin.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 146., Mohammedia, Morocco. Electronic address:

Antioxidants are vital components in various food, plant, and pharmacological products, making their quantitative, selective, and straightforward assessment essential for evaluating product quality and health benefits. Nanozymes, such as metal-organic frameworks (MOFs) with enzyme-like catalytic activity, hold significant potential for developing highly efficient antioxidant sensing platforms. This is due to their large specific surface area, low density, high porosity, structural diversity, and adjustable pore size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!