Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session4ghi67p372ba52cg7h2shf8js1276e5q): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The avian lung has been considered to be rigid and to remain isovolumetric during the respiratory cycle. We tested this hypothesis by implanting radiopaque markers of tantalum on the dorsal pulmonary surfaces and ventral pulmonary aponeuroses of Pekin ducks (Anas platyrhynchos) and measuring changes in lung thickness during the respiratory cycle using high speed cineradiography. We found small but regular changes in lung thickness that were synchronous with respiratory phase. Lung thickness was greatest at mid-inspiration (0.6% greater than mean) and least at mid-expiration (0.8% less than mean). Measurements made on ostrich (Struthio camelus) respiratory structures suggest that the maximal force that could be generated by the muscles (Mm. costopulmonales) at the margins of the ventral pulmonary aponeurosis is more than two orders of magnitude greater than would be required to resist pressure-induced changes in lung volume during respiration at rest. The action of these muscles could account for the very small magnitude of the volume changes measured during the respiratory cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0034-5687(85)90014-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!