Transplantation of seagrass (Zostera noltei) as a potential nature-based solution for the restoration of historically contaminated mudflats.

Sci Total Environ

ECOMARE, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.

Published: January 2025

Within the UN Decade on Ecosystem Restoration (2021-2030) framework, a Nature-based Solution (NbS) using Zostera noltei transplants was tested to restore a historically contaminated intertidal area. In-situ transplantation relied on patches of seagrass and sediment from a Donor meadow and its evolution was monitored for two years. The evaluation of the transplant success encompassed the seagrass coverage area, seagrass biomass, tissue mercury (Hg) accumulation, and photosynthetic efficiency. The transplant was successful, with gradual increases in the coverage area in the target area indicating adaptation to local conditions already after the first year. Although some significant differences were observed in biomass and tissue Hg concentration over time, the similar translocation factors suggest the plant has effective defensive mechanisms to prevent accumulation and cellular damage. Additionally, the normal seasonal pattern of photosynthetic parameters indicates that contamination is not impeding its photosynthetic performance and growth, suggesting this NbS as a viable restoration strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.178257DOI Listing

Publication Analysis

Top Keywords

zostera noltei
8
nature-based solution
8
historically contaminated
8
coverage area
8
biomass tissue
8
transplantation seagrass
4
seagrass zostera
4
noltei potential
4
potential nature-based
4
solution restoration
4

Similar Publications

Transplantation of seagrass (Zostera noltei) as a potential nature-based solution for the restoration of historically contaminated mudflats.

Sci Total Environ

January 2025

ECOMARE, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.

Within the UN Decade on Ecosystem Restoration (2021-2030) framework, a Nature-based Solution (NbS) using Zostera noltei transplants was tested to restore a historically contaminated intertidal area. In-situ transplantation relied on patches of seagrass and sediment from a Donor meadow and its evolution was monitored for two years. The evaluation of the transplant success encompassed the seagrass coverage area, seagrass biomass, tissue mercury (Hg) accumulation, and photosynthetic efficiency.

View Article and Find Full Text PDF

Chemical Diversity of Mediterranean Seagrasses Volatilome.

Metabolites

December 2024

CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France.

Background/objectives: Biogenic volatile organic compounds (BVOCs), extensively studied in terrestrial plants with global emissions around 1 PgC yr, are also produced by marine organisms. However, benthic species, especially seagrasses, are understudied despite their global distribution (177,000-600,000 km). This study aims to examine BVOC emissions from key Mediterranean seagrass species (, , , and ) in marine and coastal lagoon environments.

View Article and Find Full Text PDF

The present study describes macroinvertebrate assemblages in three Zostera noltei meadows, following a salinity gradient along the Aveiro lagoon (Portugal). The main environmental descriptors and Z. noltei biometrics were studied to provide a model of the multivariate macroinvertebrate assemblage structure.

View Article and Find Full Text PDF

The study of the element accumulation in marine plants against the backdrop of permanently increasing environmental pollution is of particular importance due to the participation of these plants in biogeochemical cycles. The element abundances are highly variable and depend on both the macrophyte species and environment. The purpose of this study was to analyze the elemental composition of widespread marine plants of different taxonomic affiliations collected in the same area of the Black Sea coast.

View Article and Find Full Text PDF

Hiding from heat: The transcriptomic response of two clam species is modulated by behaviour and habitat.

J Therm Biol

January 2024

Centro de Investigación Mariña (CIM) and Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, 36310, Vigo, Spain. Electronic address:

Rising occurrence of extreme warming events are profoundly impacting ecosystems, altering their functioning and services with significant socio-economic consequences. Particularly susceptible to heatwaves are intertidal shellfish beds, located in estuarine areas already stressed by factors such as rainfall events, red tides, eutrophication, and pollution. In Galicia, Northwestern Spain, these beds support vital shellfisheries, featuring the native clam Ruditapes decussatus and the non-indigenous R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!