A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation of bacterial nanocellulose/calcium phosphates-based composite containing cerium for bone repair. | LitMetric

Bacterial nanocellulose (BNC) has attracted considerable attention in the field of biomedical engineering due to its potential for use in bone regeneration applications. The present study investigates the in vitro and in vivo efficacy of bacterial nanocellulose (BNC) combined with calcium and cerium ions (BNC-Ce:CaP) in bone regeneration applications. XRD analysis confirmed the presence of monetite and hydroxyapatite phases in BNC-CaP, while BNC-Ce:CaP revealed an additional brushite phase. Based on XPS analysis, cerium (III) is found in BNC-Ce:CaP at a concentration of 4.14 % (mol/mol). BNC revealed ultrafine 3D nanofibers with diameters ranging from 20.8 to 53.0 nm, while BNC-Ce:CaP composite, containing cerium, exhibited urchin-like structures with diameters around 1 µm and BNC-CaP composite presented phosphates covering the fiber surfaces, leading to significant thickness increases and pleat formation (70-180 nm). The composite materials demonstrated insignificant cytotoxicity. The results performed by histomorphometric analysis demonstrated that the BNC-Ce:CaP composites showed superior mineralized tissue formation after 60 days. Gene expression revealed a reduction in the inflammatory response and an increase in the expression of osteogenic markers, such as Bmp-2 and Osterix, in addition to an increase in the expression of angiogenic genes, such as Vegf. These findings highlight the potential of BNC-Ce:CaP composites as effective barriers to promote bone regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2024.114476DOI Listing

Publication Analysis

Top Keywords

bone regeneration
12
composite cerium
8
bacterial nanocellulose
8
nanocellulose bnc
8
regeneration applications
8
bnc-cecap composites
8
increase expression
8
bnc-cecap
6
investigation bacterial
4
bacterial nanocellulose/calcium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!