Construction of in situ modulated controlled growth of MOF-on-mof impedimetric assembly for the practical minimal level assessment of anti-mullerian hormone.

Biosens Bioelectron

Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Department of Biomedical Science and Environmental Biology, School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Electronic address:

Published: March 2025

Anti-mullerian hormone (AMH) detection receives much attention since it is used as an ideal biomarker for quantitative assessment of ovarian reserve. The present study proposed a first report on the use of MOF-on-MOF as an electrochemical sensor for recognizing AMH in buffer and serum media. The MOF-on-MOF, MIL-88 B@UiO66NH was synthesized by the internal extended growth method (IEGM) involving MIL-88 B on UiO66NH by in situ method for the first time. MOF matrix could be established to form a three-dimensional (3D) core-shell hybrid unit using MOFs with distinct characteristics. The morphology, structural characteristics, and electrochemical performance of MIL-88 B@UiO66NH were studied. It was successfully used for AMH sensing to demonstrate the detection performance of the internal extended growth method (IEGM) grown MIL-88 B@UiO66NH made immunosensor. The electrochemical results indicated that MOF-on-MOF exhibited linear EIS response for AMH concentration varying from 100 ng/mL to 1 fg/mL. Further, the immunosensor displayed high specificity and sensitivity for AMH detection. The fabricated sensor attained a remarkable limit of detection (LOD) of 1.07 fg/mL and 0.82 fg/mL, when studied in PBS and 10% serum buffer media, respectively. The biosensor achieved the limit of quantification (LOQ) of 3.25 fg/mL and 2.5 fg/mL, respectively, when analyzed in PBS buffer and 10% serum buffer. The significant results emphasized that the fabricated biosensor holds a promising potential to act as an appropriate tool for rapid assessment of AMH levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2024.117113DOI Listing

Publication Analysis

Top Keywords

anti-mullerian hormone
8
amh detection
8
internal extended
8
extended growth
8
growth method
8
method iegm
8
10% serum
8
serum buffer
8
amh
6
construction situ
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!