A microanatomical study of the precentral cerebral wall in human fetuses of the second trimester with ventriculomegaly and corpus callosal dysgenesis.

Clin Neurol Neurosurg

Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India. Electronic address:

Published: December 2024

Background: The complex structure and function of the cerebrum make it a key focus in neuroscience research. It develops from telencephalic vesicles through processes such as cell growth, division, and migration from the neuroepithelium's ventricular matrix, forming the six-layered isocortex or neocortex. Multipotent neuroepithelial cells give rise to both neuronal and glial precursors, which populate the cerebral cortex. This study investigated the number of cerebral layers and their thickness in second-trimester human fetuses with ventriculomegaly and corpus callosal dysgenesis.

Materials And Methods: This study was conducted at Kasturba Medical College, Manipal, with Institutional Ethics Committee approval. The study analyzed the cerebral wall of 10 human fetuses in the second trimester. Histological sections were stained with hematoxylin and eosin, and the cortical layers were identified and measured.

Results: The mean total cerebral wall thickness was 4079.2 μm in fetuses with ventriculomegaly and 6532.8 μm in fetuses with corpus callosal dysgenesis. The morphological findings in corpus callosal dysgenesis included disorganization of the cortical plate zone, which may impact brain development, as well as the presence of dilated blood vessels.

Conclusion: This study quantified the six transient layers of the precentral cerebral wall, which are distinct during the embryonic stage and disappear at term. These layers are generally associated with specific neurodevelopmental processes. Compared with ventriculomegaly, corpus callosal dysgenesis involves distinct morphological alterations. One sample had disorganized cells in the cortical plate, and another displayed dilated blood vessels in the subventricular zone. These findings indicate significant disruptions in cortical development in corpus callosal dysgenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clineuro.2024.108715DOI Listing

Publication Analysis

Top Keywords

corpus callosal
24
callosal dysgenesis
20
cerebral wall
16
human fetuses
12
ventriculomegaly corpus
12
precentral cerebral
8
wall human
8
fetuses second
8
second trimester
8
fetuses ventriculomegaly
8

Similar Publications

A microanatomical study of the precentral cerebral wall in human fetuses of the second trimester with ventriculomegaly and corpus callosal dysgenesis.

Clin Neurol Neurosurg

December 2024

Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India. Electronic address:

Background: The complex structure and function of the cerebrum make it a key focus in neuroscience research. It develops from telencephalic vesicles through processes such as cell growth, division, and migration from the neuroepithelium's ventricular matrix, forming the six-layered isocortex or neocortex. Multipotent neuroepithelial cells give rise to both neuronal and glial precursors, which populate the cerebral cortex.

View Article and Find Full Text PDF
Article Synopsis
  • Motor symptom laterality in Parkinson's Disease (PD) impacts both motor and nonmotor symptoms, potentially altering patient prognosis, with compensatory mechanisms in the brain's dominant hemisphere playing a key role.
  • This study investigated the microstructural changes in the corpus callosum (CC), the brain's main connector between hemispheres, in 201 right-handed PD patients (split between left- and right-onset) compared to 100 healthy controls using advanced imaging techniques.
  • Findings revealed reduced free water and fractional anisotropy, along with increased mean diffusivity in the CC of patients with left-side PD onset, highlighting the relationship between brain structure and disease symptoms.
View Article and Find Full Text PDF

Background And Aims: The corpus callosum is recognized as the largest interhemispheric white matter structure, coordinating distinct functions of the brain. High-altitude environments may influence the structure of the corpus callosum. This study aims to evaluate the morphologic characteristics of the corpus callosum in Tibetans residing on the Qinghai-Tibet Plateau while investigating the effects of sex, age, and high-altitude exposure on its morphology.

View Article and Find Full Text PDF

Importance: Amidst an unprecedented opioid epidemic, identifying neurobiological correlates of change with medication-assisted treatment of heroin use disorder is imperative. White matter impairments in individuals with heroin use disorder (HUD) have been associated with drug craving, a reliable predictor of treatment outcomes; however, little is known about structural connectivity changes with inpatient treatment and abstinence in individuals with HUD.

Objective: To assess white matter microstructure and associations with drug craving changes with inpatient treatment in individuals with HUD (effects of time and rescan compared with controls).

View Article and Find Full Text PDF

Minimally invasive surgical techniques, such as MR-guided laser interstitial thermal therapy (LITT), have emerged as promising alternatives to open disconnective surgeries in drug-resistant epilepsy (DRE). This review synthesizes current literature on the application of LITT for corpus callosal disconnection and functional hemispheric disconnection. Studies highlight LITT's effectiveness for achieving seizure control and functional outcomes, often with reduced complications compared to traditional open procedures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!