Microbially induced calcite precipitation (MICP) while neutralizing soil pH, can lead to pore clogging which in turn may reduce bacteria transport. This study aimed to evaluate the effectiveness of the MICP process for E. coli filtration in two acidic soils. Two soil samples from Amlash (Am) and Lahijan (La) areas with pH values of 5.88 and 3.93, repectively, were collected and poured into plastic columns (14.92 × 2.4 cm). For the MICP reaction, the soil columns were saturated with a solidification solution (1:1 urea: CaCl, 1.5 M) and Sporosarcina pasteurii (∼10 cell mL), and incubated at 30 °C for 72 h. Leaching experiments were conducted on both MICP-treated and control soil columns at steady-state, saturated flow condition. A pulse of influent (0.1 PV) containing Escherichia coli (ciprofloxacin-resistant) (∼10 cell mL) and bromide tracer (1000 mg L KBr) was added at the top of the soil columns, followed by sterile water to collect the effluent. Recovered E. coli, and Br, HCO, NH, Ca ions were measured in the leachate. The profile of residual E. coli count, urease activity, and bioprecipitated CaCO content were also assessed in the soil. Correlated with bioprecipitated CaCO, the hydraulic conductivity coefficients (K) was reduced by 4.4 and 5.8 times after MICP treatment in Am and La soils, respectively, thus bacteria leaching was significantly reduced. A higher filtration coefficient (λ) and recovery rate of E. coli were calculated in the La soil column, likely due to the lower pH and higher anion exchange capacity, which induced greater bacterial mortality and electrostatic attraction, respectively. MICP treatment reduced the average and cumulative count of E. coli by ∼3.4 times compared to the control column. In conclusion, the application of MICP in acidic soil increased soil pH and reduced the risk of E. coli transport to deeper layers by reducing soil hydraulic conductivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2024.104493DOI Listing

Publication Analysis

Top Keywords

soil columns
12
soil
10
escherichia coli
8
coli transport
8
acidic soils
8
microbially induced
8
induced calcite
8
calcite precipitation
8
∼10 cell
8
bioprecipitated caco
8

Similar Publications

Strategy for the co-extraction and simultaneous quantification of organic pollutants and heavy metals by the on-line hyphenation of magnetic field-assisted in-tube solid phase microextraction and chromatographic technique.

J Hazard Mater

January 2025

Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China; College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen 361005, China. Electronic address:

Due to the distinct difference in chemical properties, analysis of organic pollutants and heavy metals generally employs different sample preparation and measurement techniques, resulting in low analytical efficiency and high cost. To this end, a strategy for the co-extraction and then simultaneous quantification of organic pollutants and heavy metals was proposed by the on-line hyphenation of magnetic field-assisted in-tube solid phase microextraction (MA/IT-SPME) and HPLC technique. Simultaneous analysis of triazoles and chromium species were adopted as paradigm to demonstrate the feasibility of the proposed strategy.

View Article and Find Full Text PDF

Identifying dissolved reactive phosphorus sources in agricultural runoff and leachate using phosphate oxygen isotopes.

J Contam Hydrol

January 2025

USDA ARS, National Soil Erosion Research Laboratory, West Lafayette, IN 47907, United States of America.

Agricultural phosphorus (P) losses may result from either recently applied fertilizers or from P accumulated in soil and sediment. While both P sources pose an environmental risk to freshwater systems, differentiating between sources is crucial for identifying and implementing management practices to decrease loss. In this study, laboratory rainfall simulations were completed on runoff boxes and undisturbed soil columns before and after fertilizer application.

View Article and Find Full Text PDF

The thermodynamic properties of frozen soil depend on its temperature state and ice content. Additionally, the permeability coefficient significantly affects both the temperature distribution and water movement. In this study, the dynamic variation of soil permeability coefficient with temperature is considered, the permeability coefficient is defined as a piecewise function with temperature as independent variable, and the hydrothermal coupling equation is established.

View Article and Find Full Text PDF

The fluorescence detection of amino compounds and the evaluation of their content in environmental samples are vital, not only for assessing food quality but also for studying soil organic matter. Here, we present the synthesis and application of a novel fluorescent probe, 4-(9-acridone)benzylmethyl carbonochloride (APE-Cl), for detecting amino compounds via a chloroformate reaction with fluorescence detection. The complete derivatization reaction of APE-Cl with amino compounds can be accomplished in aqueous acetonitrile within 5 min at room temperature, using 0.

View Article and Find Full Text PDF

Biological soil crusts (or biocrust) are diminutive soil communities with ecological functions disproportionate to their size. These communities are composed of lichens, bryophytes, cyanobacteria, fungi, liverworts, and other microorganisms. Creating stabilizing matrices, these microorganisms interact with soil surface minerals thereby enhancing soil quality by redistributing nutrients and reducing erosion by containment of soil particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!