Microbial induced carbonate precipitation (MICP) shows great potential for metals recovery from secondary sources, which is vital for circular economy. This study explores the feasibility of using Sporosarcina pasteurii for MICP to recover copper (Cu) and zinc (Zn) from acidogenic anaerobic digestates at laboratory scale. Pre-cultured S. pasteurii was inoculated into solutions containing 20 g L of urea and varying concentrations of Cu and Zn (0-25 mg L). The system was maintained at 30 °C with continuous agitation for seven days to assess Cu and Zn removal at initial pH values of 5, 6 and 7. The influence of volatile fatty acids (VFAs) on urea hydrolysis and Cu and Zn removal via S. pasteurii-induced MICP was evaluated by adding 3 g COD L of acetic and propionic acids to metal solutions. Results showed that S. pasteurii enhanced Cu and Zn removal, with yields varying from 22% to 100% depending on the initial pH. In the presence of VFAs, Cu and Zn removal was significantly reduced (p < 0.05), however, only S. pasteurii-incubated samples exhibited Cu and Zn removal, indicating exclusive biological-driven removal. The primary mechanisms of action inferred for Cu and Zn removal in VFAs-spiked samples involved urea hydrolysis, which increased local pH and facilitated metals precipitation, as well as the adsorption of metal ions onto the negatively charged S. pasteurii cell wall. This study demonstrates the potential of S. pasteurii to enhance Cu and Zn removal from VFAs-containing media paving the way for a sustainable metals recovery alternative from waste streams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.123959 | DOI Listing |
Water Environ Res
January 2025
Agrobiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Lithuania.
A comparative pot study was performed to assess the toxic effects of copper (Cu) and/or zinc (Zn) contaminated wastewater (WW) irrigation on the growth, physiology, and element concentration of wheat grown for two months. The treatments included irrigation with uncontaminated wastewater (WW) as control, Cu-contaminated WW (CuWW), Zn-contaminated WW (ZnWW), and Cu + Zn contaminated WW (CuZnWW) in a completely randomized design. Compared to ZnWW, irrigation with CuWW or CuZnWW had severe effects on growth, physiology, and mineral absorption by wheat.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
The aqueous zinc metal battery holds great potential for large-scale energy storage due to its safety, low cost, and high theoretical capacity. However, challenges such as corrosion and dendritic growth necessitate controlled zinc deposition. This study employs epitaxy to achieve large-area, dense, and ultraflat zinc plating on textured copper foil.
View Article and Find Full Text PDFNat Commun
January 2025
Energy Storage Research Department, Korea Institute of Energy Research (KIER), Daejeon, 34129, Republic of Korea.
Zinc (Zn)-based batteries have been persistently challenged by the critical issue of inhomogeneous zinc deposition/stripping process on substrate surface. Herein, we reveal that zinc electrodeposition behaviors dramatically improved through the introduction of highly zincophilic copper oxide nanoparticles (CuO NPs). Strong electronic redistribution between Zn and CuO explains the high Zn affinity on CuO, with negligible nucleation overpotential.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, Hanyang University, Seoul, Republic of Korea.
Mechanoluminescence platforms, combining phosphors with elastic polymer matrix, have emerged in smart wearable technology due to their superior elasticity and mechanically driven luminescent properties. However, their luminescence performance often deteriorates under extreme elastic conditions owing to a misinterpretation of polymer matrix behavior. Here, we unveil the role of the polymer matrices in mechanoluminescence through an interface-triboelectric effect driven by elasticity, achieving both high elasticity and brightness.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591-6707, USA.
Background: The biopharmaceutical industry is increasingly interested in the analysis of trace metals due to their significant impact on product quality and drug safety. Certain metals can potentially accelerate the formation of degradants or aggregates in biotherapeutic proteins, leading to drug product quality concerns. A better understanding of metal-mAb interactions would aid in the development of purification processes and formulations, thereby ensuring better drug quality and safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!