Plant inflorescences are complex, highly diverse structures whose morphology is determined in meristems that form during reproductive development. Inflorescence structure influences flower formation, and consequently grain number, and yield in crops. Correct inflorescence and flower development require tight control of gene expression via complex interplay between regulatory networks. MicroRNAs (miRNAs) have emerged as fundamental modulators of gene expression at the transcriptional and/or post-transcriptional level in plant inflorescence development. First discovered more than three decades ago, miRNAs have proved to be revolutionary in advancing our mechanistic understanding of gene expression. This review highlights current knowledge of downstream target genes and pathways of some highly conserved miRNAs that regulate the maintenance, identity, and activity of inflorescence and floral meristems in economically and agriculturally important grass species, including rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), and wheat (Triticum aestivum). Furthermore, we summarize emerging regulatory networks of miRNAs and their targets to suggest new avenues and strategies for application of miRNAs as a tool to enhance crop yield and performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2024.154417 | DOI Listing |
Mol Autism
January 2025
Human Anatomy Department, Nanjing Medical University, No.101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, People's Republic of China.
Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication challenges, and repetitive behaviors. Despite extensive research, the molecular mechanisms underlying these neurodevelopmental abnormalities remain elusive. We integrated microscale brain gene expression data with macroscale MRI data from 1829 participants, including individuals with ASD and typically developing controls, from the autism brain imaging data exchange I and II.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
Recent genomic studies have allowed the subdivision of intracranial ependymomas into molecularly distinct groups with highly specific clinical features and outcomes. The majority of supratentorial ependymomas (ST-EPN) harbor ZFTA-RELA fusions which were designated, in general, as an intermediate risk tumor variant. However, molecular prognosticators within ST-EPN ZFTA-RELA have not been determined yet.
View Article and Find Full Text PDFBMC Vet Res
January 2025
National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
This study aims to explore the coding sequence (CDS) of the putative DUS gene in Eimeria media and assess its potential biological functions during the parasite's lifecycle. Initially, oocysts were isolated from fecal samples of rabbits infected with E. media, from which DNA and RNA were extracted.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Departments of Endocrinology, Sheri Kashmir Institute of Medical Sciences, Srinagar, J&K, India.
Background: A significant overlap in the pathophysiological features of polycystic ovary syndrome (PCOS) and type 2 diabetes mellitus (T2DM) has been reported; and insulin resistance is considered a central driver in both. The expression and hepatic clearance of insulin and subsequent glucose homeostasis are mediated by TCF7L2 via Wnt signaling. Studies have persistently associated TCF7L2 genetic variations with T2DM, however, its results on PCOS are sparse and inconsistent.
View Article and Find Full Text PDFBiol Direct
January 2025
Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
Background: Liquid-liquid phase separation (LLPS) is essential for the formation of membraneless organelles and significantly influences cellular compartmentalization, chromatin remodeling, and gene regulation. Previous research has highlighted the critical function of liquid-liquid biopolymers in the development of hepatocellular carcinoma (HCC).
Methods: This study conducted a comprehensive review of 3,685 liquid-liquid biopolymer regulators, leading to the development of a LLPS related Prognostic Risk Score (LPRS) for HCC through bootstrap-based univariate Cox, Random Survival Forest (RSF), and LASSO analyses.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!