CAR-T Cell Therapy: Pioneering Immunotherapy Paradigms in Cancer Treatment.

Curr Pharm Biotechnol

Department of Pharmacology, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to-be University, Shirpur - 425405, India.

Published: January 2025

The world's one of the major causes of death are cancer. Cancer is still a complex disease over the years that needs to be cured. Traditional cytotoxic approaches, although they have been implemented for years for treating neoplastic diseases, yet are limited due to the intricacy and low efficiency of cancer cells. Researchers are thus compelled to seek more potent therapeutic strategies. Chimeric antigen receptor (CAR-T) cell therapy is one such innovative insight where T lymphocytes are altered genetically to target cancer cells. Despite the outstanding accomplishment in patients with haematological malignancies, CAR-T cell treatment has demonstrated minimal impact on solid tumours due to a number of obstacles, including proliferation, stability, trafficking, and fate within tumors. Furthermore, interactions between the host and tumour microenvironment with CAR-T cells significantly alter CAR-T cell activities. Designing and implementing these treatments additionally also requires a complex workforce. Overcoming these significant challenges, there is a requirement for innovative strategies for developing CAR-T cells with greater anti-tumour efficacy and reduced toxicity. In this chapter, the current advancement in CAR-T cell technology in order to increase clinical efficacy in both solid tumors and haematological, as well as possibilities to conquer the limits of CAR-T cell therapy in both solid and haematological tumours has been discussed.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0113892010330322241113062555DOI Listing

Publication Analysis

Top Keywords

car-t cell
24
cell therapy
12
car-t
8
cancer cells
8
car-t cells
8
cancer
5
cell
5
therapy pioneering
4
pioneering immunotherapy
4
immunotherapy paradigms
4

Similar Publications

Introduction: Although CAR-T cell therapy has limited efficacy against solid tumors, it has been hypothesized that prior treatment with Image-Guided Radiation Therapy (IGRT) would increase CAR-T cell tumor infiltration, leading to improved antigen specific expansion of CAR-T cells.

Methods: To test this hypothesis in a metastatic triple negative breast cancer (TNBC) model, we engineered two anti-CEA single-chain Fab (scFab) CAR-T cells with signaling domains from CD28zeta and 4-1BBzeta, and tested them and .

Results: The anti-CEA scFab CAR-T cells generated from three different human donors demonstrated robust expression, expansion, and lysis of only CEA-positive TNBC cells, with the CD28z-CAR-T cells showing the highest cytotoxicity.

View Article and Find Full Text PDF

Addressing the unmet need in NSCLC progression with advances in second-line therapeutics.

Explor Target Antitumor Ther

November 2024

Department of Medicine, Division of Medical Oncology, University of Southern California Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.

Lung cancer is the leading cause of cancer mortality globally, with non-small cell lung cancer (NSCLC) accounting for 85% of cases. Despite advancements in first-line treatments such as immunotherapy and targeted therapies, resistance to these treatments is common, creating a significant unmet need for effective second-line therapies. This review evaluates current and emerging second-line therapeutic options for advanced or metastatic NSCLC, focusing on their efficacy and potential to improve patient outcomes.

View Article and Find Full Text PDF

Cancer is a significant health challenge worldwide, causing social and economic burdens. Despite advancements in medicine, it remains a leading cause of death and is projected to increase by 2040. While conventional treatments like surgery, radiation, and chemotherapy are effective, they often have severe side effects.

View Article and Find Full Text PDF

Background And Study Aims: As a novel immunotherapy, chimeric antigen receptor T (CAR-T) cell technology is successful in treating hematologic malignancies, and exhibits potential benefits in partial solid tumors. Therapies targeting one antigen have some weaknesses, and dual-targeted CAR-T cells may be a better option. Alpha-fetoprotein (AFP) and glypican-3 (GPC3) are both highly expressed in hepatocellular carcinoma (HCC) and serve as important markers.

View Article and Find Full Text PDF

Background: In CARTITUDE-4, ciltacabtagene autoleucel (cilta-cel) significantly improved progression-free survival (primary endpoint; previously reported) versus standard of care in patients with relapsed, lenalidomide-refractory multiple myeloma. We report here patient-reported outcomes.

Methods: In the ongoing, phase 3, open-label CARTITUDE-4 study, patients were recruited from 81 sites in the USA, Europe, Asia, and Australia, and were randomly assigned 1:1 to cilta-cel (target, 0·75 × 10 CAR-T cells/kg) or standard of care (daratumumab, pomalidomide, and dexamethasone; pomalidomide, bortezomib, and dexamethasone).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!