Investigation and Characterization of Eco-Technological Synthesis of Spherical TiO Nanoparticles from Thalassia hemprichi and Analysis of Biomedical Properties.

Appl Biochem Biotechnol

Ethnopharmacology and Algal Biotechnology Laboratory, Department of Botany, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636011, India.

Published: January 2025

In this present investigation, plant-mediated synthesis of titanium oxide (TiO) nanoparticles was synthesized from seagrass (Thalassia hemprichi) using the hot plate combustion method (HPCM). Synthesized TiO nanoparticles optical, functional, structural, and morphology properties were analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). SEM analysis confirmed the spherical shape of the TiO nanoparticles were observed in various sizes, viz., 50 nm and 78 nm. The XRD analysis revealed that TiO nanoparticles have a body-centred cubic structure without a secondary phase. Green synthesized TiO nanoparticle applications were studied against the antimicrobial, antioxidant, anticancer, and photocatalytic activity. The pathogenic bacterial strains, including Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumonia, and Pseudomonas aeruginosa, were tested against TiO nanoparticles; the maximum level of activity was seen at a concentration of 50 µg/mL. The antioxidant assays were performed against TiO nanoparticles, and inhibitory concentration values (IC) were 40.28 μg/mL of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 52.04 µg/mL of the acrylamide tertiary butyl sulfonic acid (ATBS) assay, and 16.91 µg/mL of the metal chelating assay. The anticancer activity was analyzed against MCF-7 cancer cells using TiO nanoparticles, and the IC value showed 64.14 µg/mL concentration. An eco-friendly and convenient method was formulated for the production of titanium oxide nanoparticles utilizing seagrass extract. The potential employment of TiO involves water treatment, biomedicine, biosensors, and nanotechnology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-024-05143-7DOI Listing

Publication Analysis

Top Keywords

tio nanoparticles
32
tio
10
nanoparticles
9
thalassia hemprichi
8
titanium oxide
8
synthesized tio
8
investigation characterization
4
characterization eco-technological
4
eco-technological synthesis
4
synthesis spherical
4

Similar Publications

Cyclic Voltarefractometry of Single TiO Nanoparticles in Large Ensembles in Nonaqueous Electrolyte.

Anal Chem

January 2025

Nanobiotechnology Department of the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitaetsplatz 1, Senftenberg 01968, Brandenburg, Germany.

Single nanoparticle (NP) cyclic voltarefractometry (CVR), realized as wide-field surface plasmon resonance microscopy (SPRM) in combination with potential cycling, has been proposed and applied to the in situ study of TiO NPs. Electrochemical activity of TiO is mainly observed outside the electrochemical stability window of water. Therefore, the response of individual anatase (a-TiO) and rutile (r-TiO) NPs adsorbed on a gold layer was studied in 0.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles: a promising candidate for wound healing applications.

Burns Trauma

January 2025

Research Group of Immune Cell Communication, Department of Immune Medicine, Universitätsklinikum Regensburg | UKR, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.

Effective wound management and treatment are crucial in clinical practice, yet existing strategies often fall short in fully addressing the complexities of skin wound healing. Recent advancements in tissue engineering have introduced innovative approaches, particularly through the use of nanobiomaterials, to enhance the healing process. In this context, titanium dioxide nanoparticles (TiO NPs) have garnered attention due to their excellent biological properties, including antioxidant, anti-inflammatory, and antimicrobial properties.

View Article and Find Full Text PDF

The current work outlines the preparation of a TiO nanotube (NT) layer electrochemically formed on the surface of a clinically-relevant titanium alloy anodisation. This NT layer was subsequently modified alternating current electrodeposition to incorporate copper micro- and nanoparticles on top of and within the NTs. Physical characterisation of the NT layer and the copper-incorporated NTs was carried out through analysis of the surface morphology, elemental composition, crystallinity, and stability SEM, EDX, XRD, and ICP-OES, respectively.

View Article and Find Full Text PDF

At present, it is still difficult to significantly reduce the bandgap of TiO to promote its visible light absorption. Herein, we first synthesized sulfur-doped TiO from industrial TiOSO and then successfully synthesized red TiO nanoparticles by calcination with the N source melamine. Theoretical calculations show that predoped S could markedly decrease the formation energy and substitution energy of N-doped TiO, especially in high N/Ti ratios.

View Article and Find Full Text PDF

A poly(vinyl alcohol)/montmorillonite/titania (PVA/MMT/TiO) nanocomposite film was fabricated via a simple solution casting strategy for the removal of cationic as well as anionic dyes. The developed nanocomposite film was subjected to X-ray diffraction (XRD), Fourier transform Infrared (FTIR), thermogravimetric analysis, dynamic mechanical analysis (DMA), mechanical property evaluation, and scanning electron microscopy (SEM) analysis. The embedding of MMT and TiO nanoparticles onto a PVA matrix has been confirmed from XRD, FTIR, and SEM analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!