In this present investigation, plant-mediated synthesis of titanium oxide (TiO) nanoparticles was synthesized from seagrass (Thalassia hemprichi) using the hot plate combustion method (HPCM). Synthesized TiO nanoparticles optical, functional, structural, and morphology properties were analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). SEM analysis confirmed the spherical shape of the TiO nanoparticles were observed in various sizes, viz., 50 nm and 78 nm. The XRD analysis revealed that TiO nanoparticles have a body-centred cubic structure without a secondary phase. Green synthesized TiO nanoparticle applications were studied against the antimicrobial, antioxidant, anticancer, and photocatalytic activity. The pathogenic bacterial strains, including Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumonia, and Pseudomonas aeruginosa, were tested against TiO nanoparticles; the maximum level of activity was seen at a concentration of 50 µg/mL. The antioxidant assays were performed against TiO nanoparticles, and inhibitory concentration values (IC) were 40.28 μg/mL of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 52.04 µg/mL of the acrylamide tertiary butyl sulfonic acid (ATBS) assay, and 16.91 µg/mL of the metal chelating assay. The anticancer activity was analyzed against MCF-7 cancer cells using TiO nanoparticles, and the IC value showed 64.14 µg/mL concentration. An eco-friendly and convenient method was formulated for the production of titanium oxide nanoparticles utilizing seagrass extract. The potential employment of TiO involves water treatment, biomedicine, biosensors, and nanotechnology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-024-05143-7 | DOI Listing |
Anal Chem
January 2025
Nanobiotechnology Department of the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitaetsplatz 1, Senftenberg 01968, Brandenburg, Germany.
Single nanoparticle (NP) cyclic voltarefractometry (CVR), realized as wide-field surface plasmon resonance microscopy (SPRM) in combination with potential cycling, has been proposed and applied to the in situ study of TiO NPs. Electrochemical activity of TiO is mainly observed outside the electrochemical stability window of water. Therefore, the response of individual anatase (a-TiO) and rutile (r-TiO) NPs adsorbed on a gold layer was studied in 0.
View Article and Find Full Text PDFBurns Trauma
January 2025
Research Group of Immune Cell Communication, Department of Immune Medicine, Universitätsklinikum Regensburg | UKR, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
Effective wound management and treatment are crucial in clinical practice, yet existing strategies often fall short in fully addressing the complexities of skin wound healing. Recent advancements in tissue engineering have introduced innovative approaches, particularly through the use of nanobiomaterials, to enhance the healing process. In this context, titanium dioxide nanoparticles (TiO NPs) have garnered attention due to their excellent biological properties, including antioxidant, anti-inflammatory, and antimicrobial properties.
View Article and Find Full Text PDFRSC Adv
January 2025
Centre for Research in Engineering Surface Technology (CREST), Technological University Dublin City Campus, Kevin Street Dublin 8 Ireland
The current work outlines the preparation of a TiO nanotube (NT) layer electrochemically formed on the surface of a clinically-relevant titanium alloy anodisation. This NT layer was subsequently modified alternating current electrodeposition to incorporate copper micro- and nanoparticles on top of and within the NTs. Physical characterisation of the NT layer and the copper-incorporated NTs was carried out through analysis of the surface morphology, elemental composition, crystallinity, and stability SEM, EDX, XRD, and ICP-OES, respectively.
View Article and Find Full Text PDFACS Omega
December 2024
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
At present, it is still difficult to significantly reduce the bandgap of TiO to promote its visible light absorption. Herein, we first synthesized sulfur-doped TiO from industrial TiOSO and then successfully synthesized red TiO nanoparticles by calcination with the N source melamine. Theoretical calculations show that predoped S could markedly decrease the formation energy and substitution energy of N-doped TiO, especially in high N/Ti ratios.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Environmental Studies, Kannur University, Mangattuparamba Campus, Kannur, Kerala 670567, India.
A poly(vinyl alcohol)/montmorillonite/titania (PVA/MMT/TiO) nanocomposite film was fabricated via a simple solution casting strategy for the removal of cationic as well as anionic dyes. The developed nanocomposite film was subjected to X-ray diffraction (XRD), Fourier transform Infrared (FTIR), thermogravimetric analysis, dynamic mechanical analysis (DMA), mechanical property evaluation, and scanning electron microscopy (SEM) analysis. The embedding of MMT and TiO nanoparticles onto a PVA matrix has been confirmed from XRD, FTIR, and SEM analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!