Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Granite sludge dust (GSD), a significant byproduct of granite processing globally, poses severe environmental and public health challenges, with India alone generating 200 million tons annually. The conventional use of GSD in soil stabilization and construction materials is limited to 20-30%, underscoring the urgent need for sustainable repurposing solutions within the circular economy catering to broader bulk utilization. Unlike traditional techniques, repurposing granite dust using microbially induced calcite precipitation (MICP) offers a sustainable low-impact and eco-friendly ground improvement solution. It also reduces waste and associated environmental pollution. MICP leverages bacterial enzymes to catalyze urea hydrolysis, leading to calcite (CaCO) precipitation stabilizing the solids matrix. This study evaluates the efficacy of MICP in strength enhancement of GSD enabling its repurposing in low-volume roads. To assess this, unconfined compressive strength (UCS), wetting and drying (WD) durability, and X-ray diffraction (XRD) tests were conducted. Additionally, to assess the efficacy of MICP in mitigation of both wind and rainfall-induced erosion of GSD from waste containments, percentage weight loss in wind tunnel tests along with air quality parameters PM, PM, and drip erosion tests were conducted respectively. MICP treatment with Bacillus megaterium resulted in significant strength gain of up to 1355 kPa UCS, suitable for low-volume pavement subbases, enhanced durability up to two wetting and drying cycles, substantial reductions in PM and PM levels due to wind erosion, and improved resistance to rainfall-induced erosion sustaining the 10-min test. This low-carbon-intensive technique endorses circular economy goals by transforming GSD into a sustainable construction material addressing waste management, infrastructure resilience, and environmental sustainability. Further, the surficial application of MICP contributes to eco-friendly infrastructure and pollution control of GSD storage facilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-35781-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!