A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

UTF1 Expression is Important for the Generation and Maintenance of Human iPSCs. | LitMetric

Background: Undifferentiated embryonic cell transcription factor 1 (UTF1) is predominantly expressed in pluripotent stem cells and plays a vital role in embryonic development and pluripotency maintenance. Despite its established importance in murine models, the role of UTF1 on human induced pluripotent stem cells (iPSCs) has not been comprehensively studied.

Methods: This study utilized CRISPR/Cas9 gene editing to create UTF1 knockout in human fibroblasts and iPSCs. We employed episomal vectors for reprogramming UTF1 knockout fibroblasts into iPSCs and analyzed the effects of UTF1 depletion on cellular morphology, pluripotency, and viability through Western blotting, PCR, and flow cytometry. In addition, we integrated an shRNA that downregulated the expression of UTF1 for mechanistic studies to understand the impact of UTF1 depletion in iPSC pluripotency and differentiation.

Results: UTF1 knockout resulted in significantly reduced reprogramming efficiency and increased spontaneous differentiation, indicating its crucial role in maintaining human iPSC identity and stability. In knockdown experiments, gradual loss of UTF1 led to change in cellular morphologies and decreased expression of core pluripotency markers OCT4 and SOX2. Interestingly, unlike complete UTF1 knockout, the gradual downregulation of UTF1 in iPSCs did not result in apoptosis, suggesting that the loss of pluripotency can occur independently of the apoptotic pathways.

Conclusions: UTF1 is essential for maintaining the pluripotency and viability of human iPSCs. Its depletion affects the fundamental properties of stem cells, underscoring the potential challenges in using UTF1-deficient cells for therapeutic applications. Future studies should explore the mechanistic pathways through which UTF1 controls pluripotency and differentiation, which could provide insights into improving iPSC stability for clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12015-024-10836-xDOI Listing

Publication Analysis

Top Keywords

utf1 knockout
16
utf1
14
stem cells
12
human ipscs
8
pluripotent stem
8
fibroblasts ipscs
8
utf1 depletion
8
pluripotency viability
8
pluripotency
7
ipscs
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!