Background: Delirium is a severe neuropsychiatric disorder associated with increased morbidity and mortality. Numerous precipitating factors and etiologies merge into the pathophysiology of this condition which can be marked by agitation and psychosis. Judicious use of antipsychotic medications such as intravenous haloperidol reduces these symptoms and distress in critically ill individuals.

Aims: This study aimed to develop a physiologically-based pharmacokinetic (PBPK) model for the antipsychotic medication haloperidol; estimate plasma and unbound interstitial brain concentrations for repetitive haloperidol administrations used in hyperactive delirium treatment; determine dopamine receptor occupancy and antagonism under these conditions; and correlate these results with Richmond Agitation-Sedation Scale (RASS) scores and the risk of developing extrapyramidal symptoms (EPSs).

Methods: The PBPK model for single and repetitive administrations of peroral and intravenous haloperidol was developed with PK-Sim software. The pharmacodynamic (PD) model for RASS scores with haloperidol unbound interstitial brain concentration passed as the regressor was developed with the MonolixSuite 2021R platform.

Results: Peak haloperidol plasma and unbound interstitial brain concentrations following a single 2 mg intravenous dose are 32 ± 5 nM and 2.4 ± 0.4 nM. With repetitive administrations, dopamine receptor occupancy is 70%-83% and D2R antagonism is 1%-10%. Variations in dopamine receptor occupancy correlate with changes in RASS scores in individuals with hyperactive delirium. There is a linear association between the odds ratio of developing EPS and peak D2R antagonism as functions of dopamine receptor occupancy.

Conclusions: Haloperidol dopamine receptor occupancy time course and D2R antagonism parallel RASS score changes and EPS risk, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1177/02698811241309620DOI Listing

Publication Analysis

Top Keywords

dopamine receptor
24
receptor occupancy
20
unbound interstitial
12
interstitial brain
12
rass scores
12
d2r antagonism
12
haloperidol
8
haloperidol dopamine
8
occupancy antagonism
8
eps risk
8

Similar Publications

Deer mice provide a valuable naturally occurring animal model for investigating pathophysiological mechanisms underlying repetitive behaviors. Prior investigations using this model have identified abnormalities in the cortico-basal ganglia circuitry, including alterations within the indirect pathway and levels of endogenous opioids in the frontal cortex. In this study, the behaviors of n = 7 mice were quantified, and their brains were sectioned.

View Article and Find Full Text PDF

Although age differences in the dopamine system have been suggested to contribute to age-related cognitive decline based on cross-sectional data, recent large-scale cross-sectional studies reported only weak evidence for a correlation among aging, dopamine receptor availability, and cognition. Regardless, longitudinal data remain essential to make robust statements about dopamine losses as a basis for cognitive aging. We present correlations between changes in D2/3 dopamine receptor availability and changes in working memory measured over 5 yr in healthy, older adults (n = 128, ages 64 to 68 yr at baseline).

View Article and Find Full Text PDF

High-order network degree revealed shared and distinct features among schizophrenia, bipolar disorder and ADHD.

Neuroscience

January 2025

School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China; State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, China; National Demonstration Center for Experimental Mechanics Education, Xi'an Jiaotong University, Xi'an, China. Electronic address:

Schizophrenia (SCHZ), bipolar disorder (BD), and attention-deficit/hyperactivity disorder (ADHD) share clinical symptoms and risk genes, but the shared and distinct neural dynamic mechanisms remain inadequately understood. Degree is a fundamental and important graph measure in network neuroscience, and we here extended the degree to hierarchical levels based on eigenmodes and compared the resting-state brain networks of three disorders and healthy controls (HC). First, compared to HC, SCHZ and BD patients exhibited substantially overlapped abnormalities in brain networks, wherein BD patients displayed more significant alterations.

View Article and Find Full Text PDF

Examining structure-activity relationships of ManNAc analogs used in the metabolic glycoengineering of human neural stem cells.

Biomater Adv

December 2024

Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA. Electronic address:

This study defines biochemical mechanisms that contribute to novel neural-regenerative activities we recently demonstrated for thiol-modified ManNAc analogs in human neural stem cells (hNSCs) by comparing our lead drug candidate for brain repair, "TProp," to a "size-matched" N-alkyl control analog, "But." These analogs biosynthetically install non-natural sialic acids into cell surface glycans, altering cell surface receptor activity and adhesive properties of cells. In this study, TProp modulated sialic acid-related biology in hNSCs to promote neuronal differentiation through modulation of cell adhesion molecules (integrins α6, β1, E-cadherin, and PSGL-1) and stem cell markers.

View Article and Find Full Text PDF

Background: Psychosis, marked by detachment from reality, includes symptoms like hallucinations and delusions. Traditional herbal remedies like kratom are gaining attention for psychiatric conditions. This was aimed at comprehending the molecular mechanisms of Kratom's antipsychotic effects utilizing a multi-modal computational approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!