The crosstalk of transition metal ions between the metal oxide cathode and Zn anode restricts the practical applications of aqueous zinc-ion batteries (ZIBs). Herein, we propose a decoupled electrolyte (DCE) consisting of a nonaqueous-phase (N-phase) anolyte and an aqueous-phase (A-phase) catholyte to prevent the crosstalk of Mn, thus extending the lifespan of MnO-based ZIBs. Experimental measurements and theoretical modelling verify that trimethyl phosphate (TMP) not only synergistically works with NHCl in the N-phase anolyte to enable fast Zn conduction while blocking Mn diffusion toward anode, but also modifies the Zn solvation structure to suppress the dendrite formation and corrosion on Zn anode. Meanwhile, the A-phase catholyte effectively accelerates the cathode reaction kinetics. The as-developed Zn|DCE|MnO cell delivers 80.13 % capacity retention after 900 cycles at 0.5 A g. This approach is applicable for other metal oxide cathode-based ZIBs, thereby opening a new avenue for developing ultrastable ZIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202421574DOI Listing

Publication Analysis

Top Keywords

zinc-ion batteries
8
metal oxide
8
n-phase anolyte
8
a-phase catholyte
8
electrolyte decoupling
4
decoupling strategy
4
metal
4
strategy metal
4
metal oxide-based
4
oxide-based zinc-ion
4

Similar Publications

This contribution uses a rapid microwave-assisted hydrothermal synthesis method to produce a vanadium-based K1.92Mn0.54V2O5·H2O cathode material (quoted as KMnVOH).

View Article and Find Full Text PDF

In situ-Induced Crystal Facet Engineering to Enhance the Rate Performance of Zn Storage.

ACS Appl Mater Interfaces

January 2025

School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

In recent years, aqueous zinc-ion batteries (ZIBs) have shown considerable promise in the energy storage sector, attributed to their inherent high safety and cost-effectiveness. ZnVO(OH)·2HO (ZVO) has emerged as a promising candidate for Zn storage in recent years, owing to its exceptional structural stability that endows it with an excellent cycle life. However, an unsatisfactory rate performance is a limiting factor for its development in ZIBs.

View Article and Find Full Text PDF

Expansion counteraction effect assisted vanadate with rich oxygen vacancies as a high cycling stability cathode for aqueous zinc-ion batteries.

Phys Chem Chem Phys

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering and School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

In this study, a novel tunnel structure vanadate NaVO (NaVO) cathode for aqueous zinc ion batteries (AZIBs) is facilely fabricated by thermal decomposition of polyoxovanadate containing NH ions. The NaVO cathode is characterized by abundant oxygen vacancies and nanometer dimensions. These attributes can offer extra reaction sites and suppress structural collapse during circulation.

View Article and Find Full Text PDF

An aqueous zinc-ion battery with an organic-inorganic nanohybrid cathode featuring high operating voltage and long-term stability.

Chem Commun (Camb)

January 2025

Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India.

Cathode materials with both high capacity and high operating voltage are essential for advancing aqueous zinc-ion batteries (ZIBs). Conventional high-capacity materials, such as vanadium-based compounds, typically deliver low discharge voltages. In contrast, organic cathodes show high operating voltages but often exhibit limited capacity.

View Article and Find Full Text PDF

Minimizing Zn Loss Through Dual Regulation for Reversible Zinc Anode Beyond 90% Utilization Ratio.

Small

January 2025

College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Center of Energy Storage Materials and Technology, Nanjing University, Nanjing, 210093, China.

Large-scale energy storage devices experience explosive development in response to the increasing energy crisis. Zinc ion batteries featuring low cost, high safe, and environment friendly are considered promising candidates for next-generation energy storage devices. However, their practical application suffers from the limited anode lifespan under a high zinc utilization ratio, which can be attributed to aggravated Zn loss caused by zinc conversion reactions and "dead" Zn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!