A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hierarchically Engineered Self-Adaptive Nanoplatform Guided Intuitive and Precision Interventions for Deep-Seated Glioblastoma. | LitMetric

Hierarchically Engineered Self-Adaptive Nanoplatform Guided Intuitive and Precision Interventions for Deep-Seated Glioblastoma.

ACS Nano

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: January 2025

Glioblastoma multiforme (GBM), particularly the deep-seated tumor where surgical removal is not feasible, poses great challenges for clinical treatments due to complicated biological barriers and the risk of damaging healthy brain tissue. Here, we hierarchically engineer a self-adaptive nanoplatform (SAN) that overcomes delivery barriers by dynamically adjusting its structure, surface charge, particle size, and targeting moieties to precisely distinguish between tumor and parenchyma cells. We further devise a AN-uided ntuitive and recision ntervention (SGIPi) strategy which obviates the need for sophisticated facilities, skilled operations, and real-time magnetic resonance imaging (MRI) guidance required by current MRI-guided laser or ultrasound interventions. In a preclinical intracranial GBM mouse model, SGIPi-based photodynamic therapy effectively impedes GBM progression with high tumor specificity and significantly extends overall survival. Moreover, the SGIPi potentiates chemotherapy while minimizing adverse effects; it eradicates intracranial GBM lesions in 100% cases solely through Temozolomide chemotherapy. This SGIPi strategy holds potential to improve the clinical management of GBM, with the possibility of extending survival rates and even achieving complete remission, and may inspire research focus from expensive and complex hardware development to simpler, delivery-based GBM interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c11006DOI Listing

Publication Analysis

Top Keywords

self-adaptive nanoplatform
8
sgipi strategy
8
intracranial gbm
8
gbm
6
hierarchically engineered
4
engineered self-adaptive
4
nanoplatform guided
4
guided intuitive
4
intuitive precision
4
precision interventions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!