Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components. Hydroxytyrosol, tyrosol, oleuropein, apigenin, ferulic acid, and vanillic acid emerged as main phenolic constituents, with hydroxytyrosol and apigenin exhibiting high bioavailability. Molecular docking highlighted oleuropein and pinoresinol as compounds with strong binding affinities, though only hydroxytyrosol, apigenin, and pinoresinol fully met Lipinski and other drug-likeness criteria. DFT analysis showed that oleuropein and pinoresinol have notable dipole moments, reflecting polar and asymmetrical structures. KEGG enrichment analysis further linked key molecules like oleuropein and apigenin with pathways related to lipid metabolism and atherosclerosis, underscoring their potential bioactivity and relevance in health-related applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s13065-024-01369-y | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699718 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!