SMORE: spatial motifs reveal patterns in cellular architecture of complex tissues.

Genome Biol

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA.

Published: January 2025

Deciphering the link between tissue architecture and function requires methods to identify and interpret patterns in spatial arrangement of cells. We present SMORE, an approach to detect patterns in sequential arrangements of cells and examine their associated gene expression specializations. Applied to retina, brain, and embryonic tissue maps, SMORE identifies novel spatial motifs, including one that offers a new mechanism of action for type 1b bipolar cells. Structural signatures detected by SMORE also form a basis for classifying tissues. Together, our method provides a new framework for uncovering spatial complexity in tissue organization and offers novel insights into tissue function.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13059-024-03467-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697875PMC

Publication Analysis

Top Keywords

spatial motifs
8
smore
4
smore spatial
4
motifs reveal
4
reveal patterns
4
patterns cellular
4
cellular architecture
4
architecture complex
4
complex tissues
4
tissues deciphering
4

Similar Publications

SMORE: spatial motifs reveal patterns in cellular architecture of complex tissues.

Genome Biol

January 2025

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA.

Deciphering the link between tissue architecture and function requires methods to identify and interpret patterns in spatial arrangement of cells. We present SMORE, an approach to detect patterns in sequential arrangements of cells and examine their associated gene expression specializations. Applied to retina, brain, and embryonic tissue maps, SMORE identifies novel spatial motifs, including one that offers a new mechanism of action for type 1b bipolar cells.

View Article and Find Full Text PDF

Molecular basis of proton sensing by G protein-coupled receptors.

Cell

December 2024

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94148, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94115, USA. Electronic address:

Three proton-sensing G protein-coupled receptors (GPCRs)-GPR4, GPR65, and GPR68-respond to extracellular pH to regulate diverse physiology. How protons activate these receptors is poorly understood. We determined cryogenic-electron microscopy (cryo-EM) structures of each receptor to understand the spatial arrangement of proton-sensing residues.

View Article and Find Full Text PDF

Background: Abnormal brain insulin signaling has been associated with Alzheimer's disease pathology and a faster rate of late-life cognitive decline. However, the underlying mechanisms remain unclear. In this study, we examined whether AD-related cortical proteins identified using targeted-proteomics play a role in the association of brain insulin signaling and cognitive decline.

View Article and Find Full Text PDF

The coordination of chromatin remodeling is essential for DNA accessibility and gene expression control. The highly conserved and ubiquitously expressed SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex plays a central role in cell type- and context-dependent gene expression. Despite the absence of a defined DNA recognition motif, SWI/SNF binds lineage specific enhancers genome-wide where it actively maintains open chromatin state.

View Article and Find Full Text PDF

Functional diversity of cardiac macrophages in health and disease.

Nat Rev Cardiol

January 2025

Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.

Article Synopsis
  • Macrophages are a significant part of the heart's structure and play different roles in both healthy and diseased states, originating from either embryonic or definitive hematopoiesis.
  • The two main populations of cardiac macrophages can be distinguished by the presence of the CCR2 receptor, with embryonic-derived ones involved in tissue maintenance, while CCR2 macrophages are linked to inflammation and damage.
  • Recent advancements in single-cell RNA sequencing and spatial transcriptomics have deepened our understanding of macrophage diversity and their interactions within the heart, offering potential new pathways for therapeutic targets and diagnostics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!