Cephalosporin C (CPC) is a critical raw material for cephalosporin antibiotics produced by Acremonium chrysogenum. During fermentation, the oxygen supply is a crucial factor limiting the efficient biosynthesis of CPC. This study demonstrated that the addition of exogenous surfactants significantly increased the dissolved oxygen (DO) level, extracellular catalase content, and final CPC titer. Consequently, we hypothesized and examined a correlation between catalase and CPC biosynthesis in A. chrysogenum through both the exogenous addition of hydrogen peroxide (H₂O₂) and the endogenous modulation of the catA expression level. The results indicated that both the addition of H₂O₂ and the ∆catA mutation exhibited similar fermentation trends, leading to decreased extracellular catalase activity and increased intracellular reactive oxygen species (ROS) content, which resulted in reduced CPC production. Conversely, strains that overexpress varying levels of the catA accelerated hyphal differentiation under DO-limiting conditions, reducing intracellular ROS accumulation and decreasing cellular apoptosis, which stabilized CPC yield during the later stages of fermentation. This study provides a critical foundation for further investigations into the regulatory mechanisms governing CPC biosynthesis in A. chrysogenum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s40643-024-00831-y | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699191 | PMC |
Bioresour Bioprocess
January 2025
Qingdao Innovation Institute of East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
Cephalosporin C (CPC) is a critical raw material for cephalosporin antibiotics produced by Acremonium chrysogenum. During fermentation, the oxygen supply is a crucial factor limiting the efficient biosynthesis of CPC. This study demonstrated that the addition of exogenous surfactants significantly increased the dissolved oxygen (DO) level, extracellular catalase content, and final CPC titer.
View Article and Find Full Text PDFToxicology
August 2024
Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, Republic of Korea. Electronic address:
Environ Pollut
January 2024
Faculty of Science, Algoma University, Sault Ste Marie, Ontario, P6A 2G4, Canada.
Hydrogen peroxide (HO) is an environmentally-safe algaecide used to control harmful algal blooms and as a disinfectant in various domestic and industrial applications. It is produced naturally in sunny-water or as a by-product during growth, and metabolism of photosynthetic organisms. To assess the impact of HO on Arthrospira platensis, several biochemical components, and antioxidant enzymes were analysed.
View Article and Find Full Text PDFPLoS Genet
October 2023
MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.
UPF-1-UPF-2-UPF-3 complex-orchestrated nonsense-mediated mRNA decay (NMD) is a well-characterized eukaryotic cellular surveillance mechanism that not only degrades aberrant transcripts to protect the integrity of the transcriptome but also eliminates normal transcripts to facilitate appropriate cellular responses to physiological and environmental changes. Here, we describe the multifaceted regulatory roles of the Neurospora crassa UPF complex in catalase-3 (cat-3) gene expression, which is essential for scavenging H2O2-induced oxidative stress. First, losing UPF proteins markedly slowed down the decay rate of cat-3 mRNA.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2023
School of Biomedical Science, Huaqiao University, Quanzhou, China.
C-phycocyanin (C-PC), a photosynthetic protein obtained from , is regarded a highly promising commercially available biochemical. Numerous and studies have provided evidence of C-PC's ability to mitigate the inflammatory response, alleviate oxidative stress, and facilitate wound healing. However, despite the existing knowledge regarding C-PC's protective mechanism against cellular apoptosis induced by ultraviolet B (UVB) radiation, further experiments are needed to explore its anti-photoaging mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!