Distractor-specific control adaptation in multidimensional environments.

Nat Hum Behav

Department of Psychological and Brain Sciences, Washington University in St. Louis, St Louis, MO, USA.

Published: January 2025

Goal-directed behaviour requires humans to constantly manage and switch between multiple, independent and conflicting sources of information. Conventional cognitive control tasks, however, only feature one task and one source of distraction. Therefore, it is unclear how control is allocated in multidimensional environments. To address this question, we developed a multidimensional task-set interference paradigm, in which people need to manage distraction from three independent dimensions. We use this task to test whether people adapt to previous conflict by enhancing task-relevant information or suppressing task-irrelevant information. Three experiments provided strong evidence for the latter hypothesis. Moreover, control adaptation was highly dimension specific. Conflict from a given dimension only affected processing of that same dimension on subsequent trials, with no evidence for generalization. A new neural network model shows that our results can only be simulated when including multiple independent conflict-detector units. Our results call for an update to classic models of cognitive control and their neurocomputational underpinnings.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41562-024-02088-zDOI Listing

Publication Analysis

Top Keywords

control adaptation
8
multidimensional environments
8
multiple independent
8
cognitive control
8
distractor-specific control
4
adaptation multidimensional
4
environments goal-directed
4
goal-directed behaviour
4
behaviour requires
4
requires humans
4

Similar Publications

Alcohol-related cirrhosis (AC) is a condition that impacts in immunity. We analyzed changes over time in CD4subsets in AC-patients. We included patients with alcohol use disorder admitted at least twice for treatment.

View Article and Find Full Text PDF

Modeling and analysis of explicit dynamics of foot landing.

Med Biol Eng Comput

January 2025

School of Medical Engineering, Department of Cardiology of The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, 453003, Henan, China.

The research aims to investigate the mechanical response of footfalls at different velocities to understand the mechanism of heel injury and provide a scientific basis for the prevention and treatment of heel fractures. A three-dimensional solid model of foot drop was constructed using anatomical structures segmented from medical CT scans, including bone, cartilage, ligaments, plantar fascia, and soft tissues, and the impact velocities of the foot were set to be 2 m/s, 4 m/s, 6 m/s, 8 m/s, and 10 m/s. Explicit kinetic analysis methods were used to investigate the mechanical response of the foot landing with different speeds to explore the damage mechanism of heel bone at different impact velocities.

View Article and Find Full Text PDF

Vibrio vulnificus is a significant zoonotic pathogen that causes severe vibriosis in humans and fish. The lack of a national annual surveillance program in China has hindered understanding of its epidemiological characteristics and genetic diversity. This study characterized 150 V.

View Article and Find Full Text PDF

A New Global Mangrove Height Map with a 12 meter spatial resolution.

Sci Data

January 2025

ETH Zürich, Institut für Umweltingenieurwissenschaften, Zürich, Switzerland.

Mangrove forests thrive along global tropical coasts, acting as a barrier that protects coastlines against storm surges and as nurseries for an entire food web. They are also known for their high carbon sequestration rates and soil carbon stocks. We introduce a new global mangrove canopy height map generated from TanDEM-X spaceborne elevation measurements collected during the 2011-2013 period with a 12-meter spatial resolution and an accuracy of 2.

View Article and Find Full Text PDF

Visualized neural network-based vibration control for pigeon-like flexible flapping wings.

ISA Trans

January 2025

School of Artificial Intelligence, Anhui University, Hefei 230601, China. Electronic address:

This study investigates pigeon-like flexible flapping wings, which are known for their low energy consumption, high flexibility, and lightweight design. However, such flexible flapping wing systems are prone to deformation and vibration during flight, leading to performance degradation. It is thus necessary to design a control method to effectively manage the vibration of flexible wings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!