A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estimating forest aboveground carbon sink based on landsat time series and its response to climate change. | LitMetric

Accurately estimating forest carbon sink and exploring their climate-driven mechanisms are critical to achieving carbon neutrality and sustainable development. Fewer studies have used machine learning-based dynamic models to estimate forest carbon sink. The climate-driven mechanisms in Shangri-La have yet to be explored. In this study, a genetic algorithm (GA) was used to optimize the parameters of random forest (RF) to establish dynamic models to estimate the carbon sink intensity (CSI) of Pinus densata in Shangri-La and analyze the combined effects of multi-climatic factors on CSI. We found that (1) GA can effectively improve the estimation accuracy of RF, the R can be improved by up to 34.8%, and the optimal GA-RF model R is 0.83. (2) The CSI of Pinus densata in Shangri-La was 0.45-0.72 t C·hm from 1987 to 2017. (3) Precipitation has the most significant effect on CSI. The combined weak drive of precipitation, temperature, and surface solar radiation on CSI was the most dominant drive for Pinus densata CSI. These results indicate that dynamic models can be used for large-scale long-term estimation of carbon sink in highland forest, providing a feasible method. Clarifying the driving mechanism will provide a scientific basis for forest resource management.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-84258-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698910PMC

Publication Analysis

Top Keywords

carbon sink
20
dynamic models
12
pinus densata
12
estimating forest
8
forest carbon
8
climate-driven mechanisms
8
models estimate
8
csi pinus
8
densata shangri-la
8
carbon
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!