Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Virtual ligand libraries for ligand discovery have recently increased 10,000-fold. Whether this has improved hit rates and potencies has not been directly tested. Meanwhile, typically only dozens of docking hits are assayed, clouding hit-rate interpretation. Here we docked a 1.7 billion-molecule virtual library against β-lactamase, testing 1,521 new molecules and comparing the results to a 99 million-molecule screen where 44 molecules were tested. In a larger screen, hit rates improved twofold, more scaffolds were discovered and potency improved. Fifty-fold more inhibitors were found, supporting the idea that the large libraries harbor many more ligands than are being tested. In sampling smaller sets from the 1,521, hit rates only converged when several hundred molecules were tested. Hit rates and affinities improved steadily with docking score. It may be that as the scale of docking libraries and their testing grows, both ligands and our ability to rank them will improve.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41589-024-01797-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!