Purpose Of Review: The review aims to address the knowledge gap and promote the widespread adoption of quinoa as a functional food for improving metabolic health. By presenting a comprehensive overview of its nutritional profile and bioactive components, the review aims to increase consumers' awareness of the potential therapeutic benefits of incorporating quinoa into diets.

Recent Findings: Recent studies have highlighted the diverse range of bioactive compounds in quinoa, such as phytosterols, saponins, phenolic acids, phytoecdysteroids, and betalains. These compounds exhibit various health-promoting properties, such as anti-inflammatory, antioxidant, antidiabetic, and gut microbiota-modulating effects. Furthermore, research indicates that regular quinoa consumption can improve metabolic parameters, including reduced cholesterol levels, blood sugar, fat accumulation, and blood pressure. These findings highlight the potential of quinoa as a dietary tool for preventing and managing metabolic disorders, such as obesity, cardiovascular diseases, diabetes, and gut dysbiosis. The article concludes that quinoa has emerged as a promising solution to food security challenges due to its adaptability to diverse environments and rich nutritional profile. However, some findings are not consistent in the mentioned studies, therefore, well-designed cohort randomized clinical trials with diverse populations are needed. While in vivo studies are necessary to elucidate the specific mechanisms behind the potential benefits of quinoa.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13668-024-00600-5DOI Listing

Publication Analysis

Top Keywords

quinoa
8
managing metabolic
8
metabolic disorders
8
review aims
8
nutritional profile
8
unraveling role
4
role quinoa
4
quinoa managing
4
metabolic
4
disorders comprehensive
4

Similar Publications

Purpose Of Review: The review aims to address the knowledge gap and promote the widespread adoption of quinoa as a functional food for improving metabolic health. By presenting a comprehensive overview of its nutritional profile and bioactive components, the review aims to increase consumers' awareness of the potential therapeutic benefits of incorporating quinoa into diets.

Recent Findings: Recent studies have highlighted the diverse range of bioactive compounds in quinoa, such as phytosterols, saponins, phenolic acids, phytoecdysteroids, and betalains.

View Article and Find Full Text PDF

Screening of Plant UDP-Glycosyltransferases for Betanin Production in Yeast.

Appl Biochem Biotechnol

January 2025

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark.

To cover the rising demand for natural food dyes, new sources and production methods are needed. Microbial fermentation of nature-identical colours, such as the red pigment betanin, has the potential to be a cost-efficient alternative to plant extraction. The last step of betanin production is catalysed by a UDP-glycosyltransferase (UGT).

View Article and Find Full Text PDF

Carboxylated nanocellulose from quinoa husk for enhanced protease immobilization and stability of protease in biotechnological applications.

Sci Rep

January 2025

Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), P. O. Box: 31535-1897, Karaj, Iran.

Herein, an efficient and feasible approach was developed to oxidize low-cost agricultural waste (quinoa husk, QS) for the synthesis of carboxylated nanocellulose (CNC). The as-prepared rod-like CNCs (average diameter of 10 nm and length of 103 nm) with a high specific surface area (173 m/g) were utilized for the immobilization of a model protease enzyme (PersiProtease1) either physically or via covalent attachment. For chemical immobilization, CNCs were firstly functionalized with N, N'-dicyclohexylcarbodiimide (DCC) to provide DCNCs nanocarrier which could covalently bond to enzyme trough nucleophilic substitution reaction and formation of the amide bond between DCNCs and enzyme.

View Article and Find Full Text PDF

Enhancing the texture and modulating digestive behavior of gluten-free quinoa sponge cakes via microwave-assisted alkaline amino acid treatment.

Food Chem

December 2024

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China. Electronic address:

This study investigated the effects of microwave treatment combined with lysine and arginine on gluten-free quinoa sponge cakes. The results indicated that the addition of these amino acids during microwave treatment significantly increased the cakes' specific volume by 49 %. X-ray diffraction analysis revealed that cake crystallinity reached 56.

View Article and Find Full Text PDF

Corrigendum: Root symbiotic fungi improve nitrogen transfer and morpho-physiological performance in .

Front Plant Sci

December 2024

Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.

[This corrects the article DOI: 10.3389/fpls.2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!