A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Scene categorization by Hessian-regularized active perceptual feature selection. | LitMetric

Scene categorization by Hessian-regularized active perceptual feature selection.

Sci Rep

College of Computer Sciences, Anhui University, Hefei, 230039, China.

Published: January 2025

Decoding the semantic categories of complex sceneries is fundamental to numerous artificial intelligence (AI) infrastructures. This work presents an advanced selection of multi-channel perceptual visual features for recognizing scenic images with elaborate spatial structures, focusing on developing a deep hierarchical model dedicated to learning human gaze behavior. Utilizing the BING objectness measure, we efficiently localize objects or their details across varying scales within scenes. To emulate humans observing semantically or visually significant areas within scenes, we propose a robust deep active learning (RDAL) strategy. This strategy progressively generates gaze shifting paths (GSP) and calculates deep GSP representations within a unified architecture. A notable advantage of RDAL is the robustness to label noise, which is implemented by a carefully-designed sparse penalty term. This mechanism ensures that irrelevant or misleading deep GSP features are intelligently discarded. Afterward, a novel Hessian-regularized Feature Selector (HFS) is proposed to select high-quality features from the deep GSP features, wherein (i) the spatial composition of scenic patches can be optimally maintained, and (ii) a linear SVM is learned simultaneously. Empirical evaluations across six standard scenic datasets demonstrated our method's superior performance, highlighting its exceptional ability to differentiate various sophisticated scenery categories.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-84181-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698863PMC

Publication Analysis

Top Keywords

deep gsp
12
gsp features
8
deep
5
scene categorization
4
categorization hessian-regularized
4
hessian-regularized active
4
active perceptual
4
perceptual feature
4
feature selection
4
selection decoding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!