A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptomic profiling and machine learning reveal novel RNA signatures for enhanced molecular characterization of Hashimoto's thyroiditis. | LitMetric

While ultrasonography effectively diagnoses Hashimoto's thyroiditis (HT), exploring its transcriptomic landscape could reveal valuable insights into disease mechanisms. This study aimed to identify HT-associated RNA signatures and investigate their potential for enhanced molecular characterization. Samples comprising 31 HT patients and 30 healthy controls underwent RNA sequencing of peripheral blood. Differential expression analysis identified transcriptomic features, which were integrated using multi-omics factor analysis. Pathway enrichment, co-expression, and regulatory network analyses were performed. A novel machine-learning model was developed for HT molecular characterization using stacking techniques. HT patients exhibited increased thyroid volume, elevated tissue hardness, and higher antibody levels despite being in the early subclinical stage. Analysis identified 79 HT-associated transcriptomic features (3 mRNA, 6 miRNA, 64 lncRNA, 6 circRNA). Co-expression (77 nodes, 266 edges) and regulatory (18 nodes, 45 edges) networks revealed significant hub genes and modules associated with HT. Enrichment analysis highlighted dysregulation in immune system, cell adhesion and migration, and RNA/protein regulation pathways. The novel stacking-model achieved 95% accuracy and 97% AUC for HT molecular characterization. This study demonstrates the value of transcriptome analysis in uncovering HT-associated signatures, providing insights into molecular changes and potentially guiding future research on disease mechanisms and therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-80728-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699148PMC

Publication Analysis

Top Keywords

molecular characterization
16
rna signatures
8
enhanced molecular
8
hashimoto's thyroiditis
8
disease mechanisms
8
analysis identified
8
transcriptomic features
8
molecular
5
analysis
5
transcriptomic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!