A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hessian QM9: A quantum chemistry database of molecular Hessians in implicit solvents. | LitMetric

A significant challenge in computational chemistry is developing approximations that accelerate ab initio methods while preserving accuracy. Machine learning interatomic potentials (MLIPs) have emerged as a promising solution for constructing atomistic potentials that can be transferred across different molecular and crystalline systems. Most MLIPs are trained only on energies and forces in vacuum, while an improved description of the potential energy surface could be achieved by including the curvature of the potential energy surface. We present Hessian QM9, the first database of equilibrium configurations and numerical Hessian matrices, consisting of 41,645 molecules from the QM9 dataset at the ωB97x/6-31G* level. Molecular Hessians were calculated in vacuum, as well as water, tetrahydrofuran, and toluene using an implicit solvation model. To demonstrate the utility of this dataset, we show that incorporating second derivatives of the potential energy surface into the loss function of a MLIP significantly improves the prediction of vibrational frequencies in all solvent environments, thus making this dataset extremely useful for studying organic molecules in realistic solvent environments for experimental characterization.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41597-024-04361-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698913PMC

Publication Analysis

Top Keywords

potential energy
12
energy surface
12
hessian qm9
8
molecular hessians
8
solvent environments
8
qm9 quantum
4
quantum chemistry
4
chemistry database
4
database molecular
4
hessians implicit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!