The boundary between wet and arid climate zones in the Tethys Ocean remains challenging to trace, complicating our understanding of global aridification pattern during the Late Carboniferous to Early Permian transition. The North China Block (NCB), situated in the Tethys Ocean, underwent a transition from humid to arid climate during the Early Permian, providing a rare opportunity to trace this climate boundary across this region. Here, we present paleomagnetic evidence indicating that the NCB underwent rapid northward drift between 290 and 281 million years ago. The NCB's movement from a tropical wet to a subtropical arid zone corresponds to a lithological change from coal-bearing to red-bed deposits, demonstrating tectonic drift into a subtropical arid zone as the main driver of aridification in the NCB during this period. This drift also delineates the wet-dry boundary over the Tethys Ocean, consistent with modern climatic zonation patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699124PMC
http://dx.doi.org/10.1038/s41467-024-55804-8DOI Listing

Publication Analysis

Top Keywords

early permian
12
tethys ocean
12
north china
8
arid climate
8
subtropical arid
8
arid zone
8
continental drift
4
drift triggered
4
triggered early
4
permian aridification
4

Similar Publications

Atmospheric CO is thought to play a fundamental role in Earth's climate regulation. Yet, for much of Earth's geological past, atmospheric CO has been poorly constrained, hindering our understanding of transitions between cool and warm climates. Beginning ~370 million years ago in the Late Devonian and ending ~260 million years ago in the Permian, the Late Palaeozoic Ice Age was the last major glaciation preceding the current Late Cenozoic Ice Age and possibly the most intense glaciation witnessed by complex lifeforms.

View Article and Find Full Text PDF

Deep oil reservoirs are becoming increasingly significant fields of hydrocarbon exploration in recent decades. Hydrothermal fluid flow is deemed as a potentially crucial factor affecting the occurrence of deep oil reservoirs, such as enhancing porosity/permeability of reservoirs, accelerating oil generation and thermal cracking, and modifying organic properties of crude oils. Understanding the interplay between hydrothermal fluids and crude oils would provide useful constraints for reconstructing hydrocarbon accumulation processes and predicting the distribution patterns of crude oils.

View Article and Find Full Text PDF

Millerettidae are a group of superficially lizard-like Permian stem reptiles originally hypothesized as relevant to the ancestry of the reptile crown group, and particularly to lepidosaurs and archosaurs. Since the advent of cladistics, millerettids have typically been considered to be more distant relatives of crown reptiles as the earliest-diverging parareptiles and therefore outside of 'Eureptilia'. Despite this cladistic consensus, some conspicuous features of millerettid anatomy invite reconsideration of their relationships.

View Article and Find Full Text PDF

Continental drift triggered the Early Permian aridification of North China.

Nat Commun

January 2025

State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China.

The boundary between wet and arid climate zones in the Tethys Ocean remains challenging to trace, complicating our understanding of global aridification pattern during the Late Carboniferous to Early Permian transition. The North China Block (NCB), situated in the Tethys Ocean, underwent a transition from humid to arid climate during the Early Permian, providing a rare opportunity to trace this climate boundary across this region. Here, we present paleomagnetic evidence indicating that the NCB underwent rapid northward drift between 290 and 281 million years ago.

View Article and Find Full Text PDF

Sediment provenance of Late Carboniferous-Early Triassic in the Puyang area, Eastern North China Craton.

iScience

December 2024

State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, Sichuan, China.

To reveal the stratigraphic age of the Shiqianfeng Formation in the eastern continental basin of the North China Craton and the provenance of its sediments from the Late Carboniferous to the Early Triassic, six sandstone samples from the Puyang area were selected for zircon U-Pb dating. The result show that the Shiqianfeng Formation in the eastern North China Craton belongs to the Early Triassic. According to the age clusters of six samples, considering the regional geological setting and the distribution of zircon ages in the potential provenance area, it can be inferred that the Inner Mongolia Paleo-uplift provided continuous provenance supply for the study area during the Late Carboniferous-Early Triassic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!