A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Carbon nitride caught in the act of artificial photosynthesis. | LitMetric

Covalent semiconductors of the carbon nitride family are among the most promising systems to realize "artificial photosynthesis", that is exploiting synthetic materials which use sunlight as an energy source to split water into its elements or converting CO into added value chemicals. However, the role of surface interactions and electronic properties on the reaction mechanism remain still elusive. Here, we use in-situ spectroscopic techniques that enable monitoring surface interactions in carbon nitride under artificial photosynthetic conditions. We show that the water adsorption and light illumination cause changes of the surface electron density, which activate the photocatalyst and enable the water splitting process. Our results reveal critical details on the photocatalytic mechanism, which proceeds through proton-coupled electron transfer, and provide key information to design more efficient photocatalyst for artificial photosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-55518-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698875PMC

Publication Analysis

Top Keywords

carbon nitride
12
artificial photosynthesis
8
surface interactions
8
nitride caught
4
caught artificial
4
photosynthesis covalent
4
covalent semiconductors
4
semiconductors carbon
4
nitride family
4
family promising
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!