Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-entropy metal-organic frameworks (HE-MOFs) hold promise as versatile materials, yet current rare examples are confined to low-valence elements in the fourth period, constraining their design and optimization for diverse applications. Here, a novel high-entropy, defect-rich and small-sized (32 nm) UiO-66 (ZrHfCeSnTi HE-UiO-66) has been synthesized for the first time, leveraging increased configurational entropy to achieve high tolerance to doping with diverse metal ions. The lattice distortion of HE-UiO-66 induces high exposure of metal nodes to create coordination unsaturated metal sites with a concentration of 322.4 μmol/g, which increases the abundance of Lewis acid-base sites, thereby achieving a significant improvement in the performance of the catalytic transfer hydrogenation (CTH) reaction. Systematic investigation manifests that the special electronic structure of HE-UiO-66 enhances the interaction and bonding with substrate molecules and reduces the energy barrier of the hydrogen transfer process. Our approach offers a new strategy for constructing coordination unsaturated metal sites in MOFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-024-52225-5 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699162 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!