A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Radiomics and Deep Learning Model for Benign and Malignant Soft Tissue Tumors Differentiation of Extremities and Trunk. | LitMetric

Radiomics and Deep Learning Model for Benign and Malignant Soft Tissue Tumors Differentiation of Extremities and Trunk.

Acad Radiol

Department of Radiology, Southeast University Zhongda Hospital, No. 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China (M.Y., J.J.). Electronic address:

Published: January 2025

Rationale And Objectives: To develop radiomics and deep learning models for differentiating malignant and benign soft tissue tumors (STTs) preoperatively based on fat saturation T2-weighted imaging (FS-T2WI) of patients.

Materials And Methods: Data of 115 patients with STTs of extremities and trunk were collected from our hospital as the training set, and data of other 70 patients were collected from another center as the external validation set. Outlined Regions of interest included the intratumor and the peritumor region extending outward by 5 mm, then the corresponding radiomics features were extracted respectively. Deep learning was performed using pretrained 3D ResNet algorithms, and deep learning features were extracted from the entire FS-T2WI of patients. Recursive feature elimination and least absolute shrinkage and selection operator were used to select the radiomics and deep learning features with predictive value. Five machine learning algorithms were applied to build radiomics models, the area under the ROC curve (AUC) in the validation set were used to evaluate the diagnostic performance, and decision curve analysis (DCA) was used to evaluate the clinical benefit of models.

Results: Based on 20 selected deep learning and radiomics features, the deep learning radiomics (DLR) model had the best predictive performance in the validation set, with an AUC of 0.9410. DCA and calibration curves showed that the DLR model had better clinical net benefit and goodness of fit.

Conclusion: By extracting more features from FS-T2WI, the DLR model is a noninvasive, low-cost, and highly accurate preoperative differential diagnosis of benign and malignant STTs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2024.12.026DOI Listing

Publication Analysis

Top Keywords

deep learning
28
radiomics deep
12
validation set
12
dlr model
12
learning
8
benign malignant
8
soft tissue
8
tissue tumors
8
extremities trunk
8
radiomics features
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!