A wide range of acute brain injuries, including both traumatic and non-traumatic causes, can result in elevated intracranial pressure (ICP), which in turn can cause further secondary injury to the brain, initiating a vicious cascade of propagating injury. Elevated ICP is therefore a neurological injury that requires intensive monitoring and time-sensitive interventions. Patients at high risk for developing elevated ICP undergo placement of invasive ICP monitors including external ventricular drains, intraparenchymal ICP monitors, and lumbar drains. These monitors all generate an ICP waveform, but each has its own unique caveats in monitoring and accuracy. Current ICP monitoring and management clinical guidelines focus on the mean ICP derived from the ICP waveform, with standard thresholds of treating ICP greater than 20 mmHg or 22 mmHg applied broadly to a wide range of patients. However, this one-size fits all approach has been criticized and there is a need to develop personalized, evidence-based and possibly multi-factorial precision-medicine based approaches to the problem. This paper provides historical and physiological context to the problem of elevated ICP, provides an overview of the challenges of the current paradigm of ICP management strategies, and discusses advances in ICP waveform analysis, emerging non-invasive ICP monitoring techniques, and applications of machine learning to create predictive algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurot.2024.e00507 | DOI Listing |
Anal Bioanal Chem
January 2025
Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.
The wide range of mass spectrometry imaging (MSI) technologies enables the spatial distributions of many analyte classes to be investigated. However, as each approach is best suited to certain analytes, combinations of different MSI techniques are increasingly being explored to obtain more chemical information from a sample. In many cases, performing a sequential analysis of the same tissue section is ideal to enable a direct correlation of multimodal data.
View Article and Find Full Text PDFBiometals
January 2025
School of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
Bone mineral density (BMD) measured by T-score is strongly associated with bone health, but research on its association with metals in humans body remains limited. To investigate the relationship between metal exposure and BMD, numbers of 159 participants in eastern China were studied. Urine and blood samples were collected and levels of 20 metals in the samples were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain.
Three different cathodic materials for the hydrogen evolution reaction (HER) consisting of Ru nanoparticles (NPs) supported onto a bare and two doped reduced graphene oxides (r-GO) have been studied. Ru NPs have been synthesized in situ by means of the organometallic approach in the presence of each reduced graphene support (bare (rGO), N-doped (NH-rGO) and P-doped (P-rGO)). (HR)TEM, EDX, EA, ICP-OES, XPS, Raman and NMR techniques have been used to fully characterize the obtained rGO-supported Ru materials.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Gastrointestinal and Gland Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.
Purpose: Interleukin-6 (IL-6) is a central factor linking inflammation to cancer. This study aimed to provide a comprehensive assessment of the prognostic value of IL-6 and its immunotherapeutic features using a population-based pan-cancer analysis and comprehensive bioinformatic analysis.
Patients And Methods: In the cohort study, 540 patients were included to explore the prognostic value of serum IL-6 levels in cancer.
J Biochem Mol Toxicol
February 2025
Department of Chemistry, Science Faculty, Karabuk University, Karabuk, Turkey.
In this study, four novels 2,5,6-trisubstituted imidazothiadiazole derivative ligands and their Ag(I) complexes were synthesized and characterized using various spectroscopic analysis techniques. First, imidazo[2,1-b][1,3,4]thiadiazole derivative (3) was obtained from the reaction of 5-amino-1,3,4-thiadiazole-2-thiol with benzyl bromide in the presence of KOH in an ethanolic medium. In the next step, the resultant compound reacted sequentially with four substituted phenacyl bromide derivatives (4a-4d) under refluxed ethanol for 24 h to obtain substituted 2-(benzylthio)-6-phenylimidazo[2,1-b][1,3,4]thiadiazole derivatives (5-8).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!