Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, contributing substantially to patient morbidity, mortality, and healthcare system strain. Emerging research highlights a pivotal role of epigenetics in ADPKD's pathophysiology, where mechanisms like DNA methylation, histone modifications, and non-coding RNA regulation significantly impact disease onset and progression. These epigenetic factors influence gene expression and regulate key processes involved in cyst formation and expansion, fibrosis, and inflammatory infiltration, thus accelerating ADPKD progression. Consequently, exploring epigenetic regulatory mechanisms presents a valuable pathway for developing novel therapeutic strategies and diagnostic biomarkers aimed at slowing or preventing ADPKD progression. This review systematically examines existing studies on epigenetic alterations-including DNA methylation, histone modification, and non-coding RNA regulation-in ADPKD patients, providing insights into gene expression changes and functions, and identifying potential drug targets for ADPKD treatment. CLINICAL SIGNIFICANCE: Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, causing significant morbidity, increasing patient mortality, and weakening the healthcare system. Further study on ADPKD has revealed that epigenetics plays an important role in the pathophysiological process of ADPKD. Epigenetics has a significant impact on the formation and progression of ADPKD through a variety of processes including DNA methylation, histone modification, and non-coding RNA. In addition to boosting cyst formation and proliferation, it induces cystic fibrosis and inflammatory cell infiltration, ultimately leading to a poor prognosis. This review summarizes the current understanding of the associated alterations in gene expression and function produced by epigenetic regulation in ADPKD, as well as potential treatment targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2024.167652 | DOI Listing |
FASEB J
January 2025
Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.
DFNA1 (deafness, nonsyndromic autosomal dominant 1), initially identified as nonsyndromic sensorineural hearing loss, has been associated with an additional symptom: macrothrombocytopenia. However, the timing of the onset of hearing loss (HL) and thrombocytopenia has not been investigated, leaving it unclear which occurs earlier. Here, we generated a knock-in (KI) DFNA1 mouse model, diaphanous-related formin 1 (DIA1), in which Aequorea coerulescens green fluorescent protein (AcGFP)-tagged human DIA1(p.
View Article and Find Full Text PDFTumori
January 2025
IEO, European Institute of Oncology IRCCS, Division of Cancer Prevention and Genetics, Milan, Italy.
Lynch syndrome is a genetic condition predisposing to cancer, particularly colorectal cancer and endometrial cancer, due to germline mutations in MisMatch Repair genes. More rarely, Lynch syndrome is the result of a constitutional promoter methylation. This review summarizes the current knowledge about the role of this epigenetic mechanism in the Lynch syndrome.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
January 2025
Osh State University, Osh, Kyrgyzstan.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy CADASIL) is a rare inherited disorder in which thickening of the walls of small and medium-sized blood vessels blocks blood flow to the brain. Diagnosis of CADASIL is based on clinical presentation, neuroimaging findings, and genetic predisposition. This disease is uncommon in children; typically, symptoms manifest in individuals between the ages of 20 and 40, though some may exhibit symptoms later in life.
View Article and Find Full Text PDFJBMR Plus
February 2025
Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia.
Cherubism is a rare autosomal dominant skeletal dysplasia, affecting the maxilla and/or mandible. The condition typically has childhood onset, followed by progression until puberty, with subsequent regression. Cherubism lesions share histological features with giant cell tumor of bone, where high-dose monthly denosumab is an effective medical treatment.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland.
Background: Loeys-Dietz syndrome (LDS) is a clinically and genetically heterogeneous, autosomal dominant aortic aneurysm syndrome with widespread systemic involvement. We present the case of a 16.5-year-old girl with LDS type 2 (LDS2) caused by a heterozygous pathogenic variant, c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!