Collagen nanoparticles (collagen-NPs) possess numerous applications owing to their minimal immunogenicity, non-toxic nature, excellent biodegradability and biocompatibility. This study presents a novel sustainable technique for one-step green synthesis of hydrolyzed fish collagen-NPs (HFC-NPs) using a hot-water extract of Ulva fasciata biomass. HFC-NPs were characterized using TEM, FTIR, XRD, ζ-potential analyses, etc. TEM revealed hollow spherical nanoparticles exhibiting an average diameter of 27.25 nm. Face-centered central composite design was employed to maximize the HFC-NPs yield. The highest HFC-NPs yield was 13.05 mg/mL, which was achieved when the initial pH level was 7, incubation period was 72 h, and HFC concentration was 15 mg/mL. Thereafter, the possibility of using HFC-NPs as a biosafe drug carrier for doxorubicin (DOX) was tested in-vitro. Interestingly, both HFC-NPs and DOX-loaded HFC-NPs showed anticancer activity against hepatocellular carcinoma 'HCC'. In silico protein-protein interaction (PPI), network pharmacology, and functional pathway enrichment analysis of the common predicted HFC and HCC core targets suggested the involvement of PI3K-Akt, JAK-STAT, TNF, and/or Toll-like receptor signaling pathways in the HFC anti-HCC effect. In conclusion, our in vitro and in silico analyses demonstrated the HFC-NPs therapeutic efficacy against HCC, reflecting their promising potential in the development of novel anticancer drugs for HCC treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.139244 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
Phosphate pollution leads to the deterioration of water quality, posing a serious threat to human health. Tetracycline hydrochloride (TC), a class of broad-spectrum bacteriostatic agents, has garnered attention due to its extensive use and potential toxicity. Therefore, developing a highly selective and sensitive fluorescent probe for the detection of phosphates and TC is of significant importance.
View Article and Find Full Text PDFLangmuir
January 2025
College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China.
Solar-driven interfacial evaporation technology is regarded as a promising strategy for global freshwater shortage owing to its green and sustainable desalination process. Graphene aerogel (GA) is widely utilized in the design of solar-driven steam generation systems due to its excellent photothermal conversion efficiency and broad spectral absorption. Given the significant impact of hydrophilicity and thermal insulation on the performance of evaporators, nitrogen doping in the graphene structure not only effectively enhances its wettability but also allows for moderate tuning of its thermal conductivity, thereby optimizing the overall performance of the evaporator.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
The translocation of an aryl group from selenium into carbon enabled by the cleavage of the C-Se bond is reported by using nitrogen atom-linked 1,7-diynes and diaryl diselenides as starting materials, leading to various selenophene derivatives in a regioselective manner. This method enables the construction of two C-Se bonds and two C-C bonds through sequential radical bicyclization and 1,2-aryl migration under metal-free conditions. Control experiments and mechanistic studies suggest that this reaction proceeds through the cleavage of the inert C(Ph)-Se bond, facilitating the aryl translocation process.
View Article and Find Full Text PDFActa Paediatr
January 2025
Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
J Fluoresc
January 2025
Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, Maharashtra, India.
A straightforward one-step hydrothermal method is introduced for synthesizing highly efficient red fluorescence carbon dots (R-CQDs), utilizing Heena leaf (Lawsonia inermis) powder as the carbon precursor. The resulting R-CQDs exhibit excitation at 540 nm and emission at 675 nm, a high absolute photoluminescence (PL) with quantum yield of 40% in ethanol. Various physicochemical characterization was employed to confirm successful formation of R-CQDs including UV-Vis Spectroscopy, Fourier Transform Infrared (FT-IR) Spectroscopy, X-ray diffraction Spectroscopy, Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!