Tobacco use disorder is a chronic disorder that affects more than one billion people worldwide and causes the death of millions each year. The rewarding properties of nicotine are critical for the initiation of smoking. Previous research has shown that the activation of glucocorticoid receptors (GRs) plays a role in nicotine self-administration in rats. However, the role of GRs in the acute rewarding effects of nicotine are unknown. In this study, we investigated the effects of the GR antagonist mifepristone and the nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine on the reward-enhancing effects of nicotine using the intracranial self-stimulation (ICSS) procedure in adult male and female rats. The rats were prepared with ICSS electrodes in the medial forebrain bundle and then trained on the ICSS procedure. Nicotine lowered the brain reward thresholds and decreased response latencies similarly in male and female rats. These findings suggest that nicotine enhances the rewarding effects of ICSS and has stimulant properties. Treatment with the GR antagonist mifepristone did not affect the reward-enhancing effects of nicotine but increased response latencies, suggesting a sedative effect. Mecamylamine prevented the nicotine-induced decrease in brain reward thresholds and response latencies, but did not affect the brain reward thresholds or response latencies of the control rats. These findings suggest that the rewarding effects of nicotine are mediated via the activation of nAChRs, and that the activation of GRs does not contribute to the acute rewarding effects of nicotine. These studies enhance our understanding of the neurobiological mechanisms underlying tobacco use disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drugalcdep.2024.112531DOI Listing

Publication Analysis

Top Keywords

effects nicotine
24
rewarding effects
16
response latencies
16
reward-enhancing effects
12
icss procedure
12
male female
12
female rats
12
brain reward
12
reward thresholds
12
nicotine
10

Similar Publications

Guidance for Introducing the Tobacco-Free Generation Policy.

Int J Health Plann Manage

January 2025

SMRI, The University of Sydney, Sydney, Australia.

This article serves as a guide to the Tobacco-Free Generation policy (TFG) for policy-makers, drawing on experiences of negotiations regarding TFG in a wide number of jurisdictions. It explains the underlying concept: the highly addictive nature of nicotine prompts policy focus on preventing initial use by forbidding sales to those born after a prescribed cut-off birthdate, while resisting prohibition for those in older cohorts who may already be nicotine-dependent. The policy signals that there is no safe age for tobacco products.

View Article and Find Full Text PDF

Tobacco use disorder is a chronic disorder that affects more than one billion people worldwide and causes the death of millions each year. The rewarding properties of nicotine are critical for the initiation of smoking. Previous research has shown that the activation of glucocorticoid receptors (GRs) plays a role in nicotine self-administration in rats.

View Article and Find Full Text PDF

The study aimed to evaluate the potential protection against fractures of oral Q10 supplementation in the tibias of rats exposed to nicotine. Nicotine is known to negatively impact bone density and increase the risk of fractures, in addition to affecting other systems such as the gastrointestinal system, impairing its absorption capacity, negatively affecting bone health. To investigate this, eighty male rats were divided into four groups (n = 20) receiving either nicotine hemisulfate or saline solution (SS) for 28 days.

View Article and Find Full Text PDF

Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.

Background: Alzheimer's disease (AD) has both genetic and environmental risk factors. Gene-environment interaction may help explain some missing heritability. There is strong evidence for cigarette smoking as a risk factor for AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!